Materials Sciences and Applications

Volume 10, Issue 2 (February 2019)

ISSN Print: 2153-117X   ISSN Online: 2153-1188

Google-based Impact Factor: 0.97  Citations  

Ion Exchange of Layer-Structured Titanate CsxTi2-x/2Mgx/2O4 (x = 0.70) and Applications as Cathode Materials for Both Lithium- and Sodium-Ion Batteries

HTML  XML Download Download as PDF (Size: 726KB)  PP. 150-157  
DOI: 10.4236/msa.2019.102012    693 Downloads   1,446 Views  
Author(s)

ABSTRACT

Cathode materials for rechargeable batteries have been extensively investigated. Sodium-ion batteries are emerging as alternatives to lithium-ion batteries. In this study, a novel cathode material for both lithium- and sodium-ion batteries has been derived from a layered crystal. Layer-structured titanate CsxTi2-x/2Mgx/2O4 (x = 0.70) with lepidocrocite (γ-FeOOH)-type structure has been prepared in a solid-state reaction from Cs2CO3, anatase-type TiO2, and MgO at 800°C. Ion-exchange reactions of Cs+ in the interlayer space were studied in aqueous solutions. The single phases of Li+, Na+, and H+ exchange products were obtained, and these were found to contain interlayer water. The interlayer water in the lithium ion-exchange product was removed by heating at 180°C in vacuum. The resulting titanate Li0.53H0.13Cs0.14Ti1.65Mg0.30O4 was evaluated for use as cathodes in both rechargeable lithium and sodium batteries. The Li+ intercalation-deintercalation capacities were found to be 151 mAh/g and 114 mAh/g, respectively, for the first cycle in the voltage range 1.0 - 3.5 V. The amounts of Li+ corresponded to 0.98 and 0.74 of the formula unit, respectively. The Na+ intercalation-deintercalation capacities were 91 mAh/g and 77 mAh/g, respectively, for the first cycle in the voltage range 0.70 - 3.5 V. The amounts of Na+ corresponded to 0.59 and 0.50 of the formula unit, respectively. The new cathode material derived from the layer-structured titanate is non-toxic, inexpensive, and environmentally benign.

Share and Cite:

Ohashi, M. (2019) Ion Exchange of Layer-Structured Titanate CsxTi2-x/2Mgx/2O4 (x = 0.70) and Applications as Cathode Materials for Both Lithium- and Sodium-Ion Batteries. Materials Sciences and Applications, 10, 150-157. doi: 10.4236/msa.2019.102012.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.