International Journal of Geosciences

Volume 2, Issue 1 (February 2011)

ISSN Print: 2156-8359   ISSN Online: 2156-8367

Google-based Impact Factor: 0.56  Citations  h5-index & Ranking

Up-To-Date Geodynamics and Seismicity of Central Asia

HTML  Download Download as PDF (Size: 3319KB)  PP. 1-12  
DOI: 10.4236/ijg.2011.21001    5,399 Downloads   12,386 Views  Citations

Affiliation(s)

.

ABSTRACT

The analysis of the seismicity in central Asia shows its distribution within a “triangle” of maximal inner-continental seismic activity, which is situated between south edge of the Lake Baikal and the Himalayas. The “triangle” coincides with the central Asian transit zone which divides the north Eurasian and Indian lithosphere plates and provides transfer and relaxation of tectonic stresses that arise between them. The central Asian transit zone consists of numerous crust blocks of different sizes. Blocks’ boundaries are often represented by not only single faults but relatively wide interblock zones characterized by intensive shattering of rocks and releasing a significant quantity of the seismic energy. The most active interblock zones limited the Pamirs, Tien Shan, Shan, and Bayanhar blocks as well as north boundaries of the Indian Plate. The quantity of the seismic energy releasing along each of them reaches ≥ 5?1015 J, while along other boundaries it doesn’t exceed 3?1012-2?1015 J. The majority of the most intensive seismic events took place just in these interblock zones. The total quantity of seismic energy is generally diminished away from the boundary of the Indian Plate, but sometimes the maximal quantity releases in inner parts of the transit zone at the distance 500-1500 km from the plate boundary. The most active interblock zones of central Asia differ from subduction and collision zones by depth of their penetration in lithosphere and at the same time are rather near to them by the volume of energy realizing. The examination of interblock zones shows that the majority of intensives earthquakes occur within them in regions with sharp changes of geodynamic conditions. On the whole the most part of central Asia is situated under the influence of the Indian indenter, which causes the prevailing of transpression tectonics. An abnormal high seismic energy releasing depends of deep continuation of the plate slab in collision zones (Pamirs, Himalayas), intensive displacements along strike-slips and thrusts due to collision processes and deep lithosphere unhomogeneity (Tien Shan, Bayanhar), as well as of sharp changes of geodynamic conditions because of influence of plate movement and supposed mantle plumes (north Mongolia, the Baikal region).

Share and Cite:

Y. Gatinsky, D. Rundquist, G. Vladova and T. Prokhorova, "Up-To-Date Geodynamics and Seismicity of Central Asia," International Journal of Geosciences, Vol. 2 No. 1, 2011, pp. 1-12. doi: 10.4236/ijg.2011.21001.

Cited by

[1] Современная блоковая структура и сейсмичность Северо-и Южно-Китайской платформ
[2] Tentative Intracontinental Seismic Activity in South Siberia and Russian Far East
2021
[3] Thermal structure beneath the Tarim craton and its tectonic implications
Frontiers in Earth …, 2021
[4] ГЕОДИНАМИКА И СЕЙСМИЧНОСТЬ ВОСТОЧНО-АЗИАТСКОЙ ТРАНЗИТНОЙ ЗОНЫ
2020
[5] Seismicity of the Erguna Region (Northeastern China): Evidence for Local Stress Redistribution
2020
[6] On the Problem of Distinction between Recent Geodynamics of Central and East Asia
2020
[7] К проблеме различия современной геодинамики Центральной и Восточной Азии
2020
[8] ГЕОДИНАМИЧЕСКИЕ РЕЖИМЫ ЦЕНТРАЛЬНОЙ АЗИИ ЗАПАДНЕЕ И ВОСТОЧНЕЕ ГЕОРАЗДЕЛА 102-104°
2020
[9] СВЯЗЬ ИНТЕНСИВНОСТИ СЕЙСМИЧНОСТИ ЦЕНТРАЛЬНОЙ АЗИИ С СОВРЕМЕННОЙ ГЕОДИНАМИКОЙ РЕГИОНА
2019
[10] THE 102–103 Egeodivider IN THE MODERN LITHOSPHERE STRUCTURE OF СENTRAL ASIA
Geodynamics & Tectonophysics, 2018
[11] Bureya-Jiamusi Superterrane: Tectonic and Geodynamic Processes in Late Mesozoic-Cenozoic
2018
[12] СОВРЕМЕННЫЙ ГЕОРАЗДЕЛ 102-103° ЦЕНТРАЛЬНОЙ АЗИИ И ЕГО РОЛЬ В СТРУКТУРЕ КОРЫ И ЛИТОСФЕРЫ
2018
[13] Геодивайдер 102–103° в. д. в современной структуре литосферы Центральной Азии
2018
[14] THE 102-103° E GEODIVIDER IN THE MODERN LITHOSPHERE STRUCTURE OF СENTRAL ASIA
2018
[15] Современные тектонические движения и землетрясения в северной части Каспийского горнопромышленного региона
2018
[16] Up-to-date geodynamics and seismicity of the Caspian mining industrial region
2017
[17] Geodynamics and seismicity of the eastern part of Central Asia
Doklady Earth Sciences, 2017
[18] ГЕОДИНАМИКА И СЕЙСМИЧНОСТЬ ВОСТОЧНОЙ ЧАСТИ ЦЕНТРАЛЬНОЙ АЗИИ
2017
[19] Современная геодинамика горнопромышленных регионов востока азиатской части России и ближнего зарубежья
2016
[20] К вопросу о современной геодинамике и сейсмичности Каспийского горнопромышленного региона
2016
[21] On the Matter of Up-to-Date Geodynamics and Seismicity of the Caspian Mining Industrial Region
2016
[22] БЛОКИ И ГЕОФИЗИЧЕСКИЕ ПОЛЯ ЮЖНОЙ СИБИРИ И ПРИЛЕГАЮЩИХ СТРАН
2015
[23] Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere
2015
[24] Destruction of the lithosphere: Faultblock divisibility and its tectonophysical regularities
2015
[25] Seismic active zones in South Siberia, Russian Far East, and adjacent countries
RUSSIAN JOURNAL OF EARTH SCIENCES, 2015
[26] Superficial and Deep Structure of Central Asia as Example of Continental Lithosphere Heterogeneity
2014
[27] Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция
2014
[28] Уровень сейсмической опасности в районах стратегических энергетических объектов приграничных территорий России и ближнего зарубежья
ЭЛЕКТРОННОЕ …, 2013
[29] Деформационные волны как триггерный механизм сейсмической активности в сейсмических зонах континентальной литосферы
Геодинамика и тектонофизика, 2013
[30] Deformation waves as a trigger mechanism of seismic activity in seismic zones of
2013
[31] Up-to-Date Block Structure of Central Asia in Geophysical Fields
2013
[32] СЕЙСМИЧЕСКОЙ АКТИВНОСТИ В СЕЙСМИЧЕСКИХ ЗОНАХ КОНТИНЕНТАЛЬНОЙ ЛИТОСФЕРЫ
2013
[33] О сейсмической безопасности геостратегически значимых энергетических объектов России и ближнего зарубежья
2012
[34] ДЕСТРУКЦИЯ ЛИТОСФЕРЫ: РАЗЛОМНО-БЛОКОВАЯ ДЕЛИМОСТЬ И ЕЁ ТЕКТОНОФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ
Геодинамика и тектонофизика, 2012
[35] SEISMIC-GEODYNAMIC MONITORING OF THE MAIN POWER-STATIONS SITUATION WITHIN EAST EUROPE AND NORTH ASIA
7th EUREGEO - European Congress on Regional Geoscientific Cartography and Information Systems, 2012
[36] Destruction of the lithosphere: Faultblock divisibility and its tectonophysical regu
2012
[37] Геодинамика центральной азии и прогноз катастрофических землетрясений
пространство и время, 2011
[38] Seismic-Geodynamic Monitoring of Main Electric Power-Stations in East Europe and North Asia
International Journal of Geosciences, 2011
[39] АНАЛИЗ ГЕОДИНАМИКИ И СЕЙСМИЧНОСТИ В РАЙОНАХ РАСПОЛОЖЕНИЯ ГЛАВНЕЙШИХ ЭЛЕКТРОСТАНЦИЙ ЕВРОПЕЙСКОЙ ЧАСТИ РОССИИ И БЛИЖАЙШЕГО ЗАРУБЕЖЬЯ
Пространство и Время, 2011
[40] Evolution of Rotation Structures in the Earth's Geological History
2011
[41] the Kopet Dag Range in Turkmenistan, left side ones–in northeast transcurrent faults within the Lesser Caucasus. The extension occurs, after CMT data, in …
YG Gatinsky

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.