Intelligent Information Management

Volume 5, Issue 4 (July 2013)

ISSN Print: 2160-5912   ISSN Online: 2160-5920

Google-based Impact Factor: 1.6  Citations  

A Video Game Based on Optimal Control and Elementary Statistics

HTML  XML Download Download as PDF (Size: 280KB)  PP. 103-116  
DOI: 10.4236/iim.2013.54011    3,848 Downloads   5,672 Views  

ABSTRACT

The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics and must cooperate between themselves. The video game has been developed having in mind as players for children aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The video game has been experimented on a sample of a few dozen children. The children aged between five and eight years find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the predators (their opponents) and on the physical limitations to the movements of the game actors. The interest in the game decreases when the age of the players increases. The game is too simple to interest a teenager. The game engine consists in the solution of an assignment problem, in the closed loop solution of an optimal control problem and in the adaptive choice of some parameters. At the beginning of each match, and when necessary during a match, an assign- ment problem is solved, that is the game engine chooses how to assign to the predators the preys to chase. The resulting assignment implies some cooperation among the predators and defines the optimal control problem used to compute the strategies of the predators during the match that follows. These strategies are determined as the closed loop solution of the optimal control problem considered and can be thought as a (first) form of artificial intelligence (AI) of the preda- tors. In the optimal control problem the preys and the predators are represented as point masses moving according to Newton’s dynamical principle under the action of friction forces and of active forces. The equations of motion of these point masses are the constraints of the control problem and are expressed through differential equations. The formula- tion of the decision process through optimal control and Newton’s dynamical principle allows us to develop a game where the effectiveness and the goals of the automated players can be changed during the game in an intuitive way sim- ply modifying the values of some parameters (i.e. mass, friction coefficient, ...). In a sequence of game matches the predators (automated players) have “personalities” that try to simulate human behaviour. The predator personalities are determined making an elementary statistical analysis of the points scored by the preys in the game matches played and consist in the adaptive choice of the value of a parameter (the mass) that appears in the differential equations that define the movements of the predators. The values taken by this parameter determine the behaviour of the predators and their effectiveness in chasing the preys. The predators personalities are a (second) form of AI based on elementary statistics that goes beyond the intelligence used to chase the preys in a match. In a sequence of matches the predators using this second form of AI adapt their behaviour to the preys’ behaviour. The video game can be downloaded from the website: http://www.ceri.uniroma1.it/ceri/zirilli/w10/.

Share and Cite:

Giacinti, M. , Mariani, F. , Recchioni, M. and Zirilli, F. (2013) A Video Game Based on Optimal Control and Elementary Statistics. Intelligent Information Management, 5, 103-116. doi: 10.4236/iim.2013.54011.

Cited by

No relevant information.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.