Positioning

Volume 1, Issue 8 (December 2004)

ISSN Print: 2150-850X   ISSN Online: 2150-8526

Google-based Impact Factor: 1  Citations  

First results from Virtual Reference Station (VRS) and Precise Point Positioning (PPP) GPS research at the Western Australian Centre for Geodesy

HTML  Download Download as PDF (Size: 180KB)  PP. 0-0  
   1,568 Downloads   3,812 Views  

ABSTRACT

Over the past 18 months, a team in the Western Australian Centre for Geodesy at Curtin University of Technology, Perth, has been researching the optimum configurations to achieve long-range and precise GPSbased aircraft positioning for subsequent airborne mapping projects. Three parallel strategies have been adopted to solve this problem: virtual reference stations (VRS), precise point positioning (PPP), and multiple reference stations (MRS). This paper briefly summarises the concepts behind the PPP and VRS techniques, describes the development and testing of in-house software, and presents the latest experimental results of our research. Current comparisons of the PPP and VRS techniques with an independently well-controlled aircraft trajectory and ground-based stations in Norway show that each deliver precisions of around 3 cm. However, the implementation of more sophisticated error modeling strategies in the MRS approach is expected to better deliver our project’s objectives.

Share and Cite:

N. Castleden, G. Hu, D. Abbey, D. Weihing, O. ?vstedal, C. Earls and W. Featherstone, "First results from Virtual Reference Station (VRS) and Precise Point Positioning (PPP) GPS research at the Western Australian Centre for Geodesy," Positioning, Vol. 1 No. 8, 2004, pp. -.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.