American Journal of Analytical Chemistry

Volume 14, Issue 1 (January 2023)

ISSN Print: 2156-8251   ISSN Online: 2156-8278

Google-based Impact Factor: 1.71  Citations  h5-index & Ranking

Revisiting “Non-Thermal” Batch Microwave Oven Inactivation of Microorganisms

HTML  XML Download Download as PDF (Size: 6531KB)  PP. 28-54  
DOI: 10.4236/ajac.2023.141003    112 Downloads   550 Views  

ABSTRACT

Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic measurement of a domestic microwave oven cavity-magnetron operating at fo = 2.45 ± 0.05 GHz (λo ~ 12.2 cm) that is modulated in the time-domain (0 to 2 minutes). The measurements reveal the cavity-magnetron cathode filament cold-start warm-up period and the pulse width modulation periods (time-on time-off and base-time period, where time-on minus base-time = duty cycle). The waveform information is used to reconstruct historical microwave “non-thermal” homogeneous microorganism inactivation experiments: where tap-water is used to mimic the microorganism suspension; and ice, crushed ice, and ice slurry mixture are used as the cooling media. The experiments are described using text, diagrams, and photographs. Four key experimental parameters are indentified that influence the suspension time-dependent temperature profile. First, where the selected process time > the time-base, the cavity-magnetron continuous wave rated power should be used for each second of microwave illumination. Second, external crushed ice and ice slurry baths induce different cooling profiles due to difference in their heat absorption rates. In addition external baths may shield the suspension resulting in a retarding of the time-dependent heating profile. Third, internal cooling systems dictate that the suspension is directly exposed to microwave illumination due to the absence of surrounding ice volume. Fourth, four separated water dummy-loads isolate and control thermal heat transfer (conduction) to and from the suspension, thereby diverting a portion of the microwave power away from the suspension. Energy phase-space projections were used to compare the “non-thermal” energy densities of 0.03 to 0.1 kJ·m-1 at 800 W with reported thermal microwave-assisted microorganism inactivation energy densities of 0.5 to 5 kJ·m-1 at 1050 ± 50 W. Estimations of the “non-thermal” microwave-assisted root mean square of the electric field strength are found to be in the range of 22 to 41.2 V·m-1 for 800 W.

Share and Cite:

Law, V. and Dowling, D. (2023) Revisiting “Non-Thermal” Batch Microwave Oven Inactivation of Microorganisms. American Journal of Analytical Chemistry, 14, 28-54. doi: 10.4236/ajac.2023.141003.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.