Open Journal of Composite Materials

Volume 12, Issue 4 (October 2022)

ISSN Print: 2164-5612   ISSN Online: 2164-5655

Google-based Impact Factor: 1.5  Citations  

Experimental Investigation on the Thermal Properties of Gypsum Plaster-Rice Husk Ash Composite

HTML  XML Download Download as PDF (Size: 710KB)  PP. 131-138  
DOI: 10.4236/ojcm.2022.124010    109 Downloads   866 Views  

ABSTRACT

This experimental investigation aims at evaluating the thermal properties of rice husk ash (RHA)—filled gypsum plaster composite for potential applications, as insulating materials. The thermal conductivities of composites of gypsum plaster reinforced with RHA at 0%, 10%, 20%, 30%, and 40% volume fractions were determined experimentally using Lee’s disc method. The experimental results show that integrating RHA reduces the thermal conductivity of gypsum plaster and improves its insulation capacity. The results obtained from the experiments were compared with the Rule of Mixture Model, Maxwell Model, and Russell Model. It was observed that the thermal conductivities obtained from experiments and the theoretical models decreased with an increase in the volume fraction of RHA. The errors associated with the models with respect to experimental results are on the average of 28.7% for Mixture Rule, 31.6% for Russel Model, and 18.8% for the Maxwell Model. An agricultural waste like RHA can be beneficially used for the preparation of composites and, due to improved insulation capability, these composites can be used for applications such as insulation boards and sheathing, hardboard, ceilings of roofs, decorations, etc.

Share and Cite:

Amulah, N. , El-Jummah, A. , Hammajam, A. and Ibrahim, U. (2022) Experimental Investigation on the Thermal Properties of Gypsum Plaster-Rice Husk Ash Composite. Open Journal of Composite Materials, 12, 131-138. doi: 10.4236/ojcm.2022.124010.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.