Advances in Bioscience and Biotechnology

Volume 12, Issue 3 (March 2021)

ISSN Print: 2156-8456   ISSN Online: 2156-8502

Google-based Impact Factor: 1.18  Citations  h5-index & Ranking

Development of Split-Protein Systems: From Binary to Ternary System

HTML  XML Download Download as PDF (Size: 726KB)  PP. 78-94  
DOI: 10.4236/abb.2021.123006    664 Downloads   2,798 Views  
Author(s)

ABSTRACT

Tens of thousands of protein-protein interactions (PPIs) have been found in human cells and many of these macromolecular partnerships could determine the cell growth and death. Thus there is a need to develop the methods to catalogue these macromolecules by detecting their interactions, modifications, and cellular locations. It will be helpful for scientists to compare the difference between a diseased cellular state and its normal state and to find the potential therapy treatment to intervene this status. One technology called split-protein reassembly or protein fragment complementation has been developed in the last two decades. This technology makes use of appropriate fragmentation of some protein reporters and the refolding of these reports could be detected by their function to confirm the interaction of interest. This system has been set up in cell-free systems, E. coli, yeast, mammalian cells, plants and live animals. Herein, I present the development in fluorescence- and bioluminescence-based split-protein biosensors in both binary and ternary systems. In addition, some people developed the split-protein system by combining it with chemical inducer of dimerization strategy (CID). This has been applied for identifying the enzyme inhibitors and regulating the activity of protein kinases and phosphatases. With effort from many laboratories from the world, a variety of split-protein systems have been developed for studying the PPI in vitro and in vivo, monitoring the biological process, and controlling the activity of the enzyme of interest.

Share and Cite:

Shen, S. (2021) Development of Split-Protein Systems: From Binary to Ternary System. Advances in Bioscience and Biotechnology, 12, 78-94. doi: 10.4236/abb.2021.123006.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.