Journal of Biomaterials and Nanobiotechnology

Volume 11, Issue 4 (October 2020)

ISSN Print: 2158-7027   ISSN Online: 2158-7043

Google-based Impact Factor: 1.69  Citations  

Synthesis and Characterization of Citrus limonum Essential Oil Based Nanoemulsion and Its Enhanced Antioxidant Activity with Stability for Transdermal Application

HTML  XML Download Download as PDF (Size: 2971KB)  PP. 215-236  
DOI: 10.4236/jbnb.2020.114014    947 Downloads   3,847 Views  Citations

ABSTRACT

Lemon oil (LO), also known as Citrus limonum is a highly volatile essential oil (EO) with potential therapeutic properties like anti-oxidative, anti-proliferative, anti-fungal and anti-cancerous. However, the efficacy of LO is limited due to its physiological factors such as high volatility, poor stability (particularly sensitive to sunlight) and quick degradability upon exposure. To overcome these challenges, we formulated lemon oil loaded nanoemulsion system (LO-NE) (oil-in-water), using aqueous titration method. The formulation comprised of lemon oil (LO), Tween 80 and ethanol as oil, surfactant and co-surfactant phases respectively. The existence zone of NE was established by constructing pseudo-ternary phase diagrams using different concentrations of LO, surfactant and co-surfactant (Smix). The quantitative estimation of LO was performed using a high throughput gas chromatography, revealing the presence of various compounds like Limonene, Alpha-Pinene and Linalyl acetate followed by the estimation of total phenolics and flavonoid content. The characterization of LO-NE indicated the particle size of 60 ± 2.5 nm along with the polydispersity index of 0.125 and zeta potential of 14.9 mV. The size range of the NE particles dispersed in the colloidal system was further verified by TEM micrograph which shows size range between 46.2 - 104.7 nm. All the anti-oxidant assays outcomes exhibited the higher activity of LO-NE in comparison to LO alone with lower IC50 values. The release kinetics statistical data showed that LO-NE had a sustained release and followed the Higuchi’s model in comparison to burst release of LO alone. Lastly, the stability analysis of the optimised formulation (LO-NE) and LO was estimated through antioxidant assay and subjecting them for thermodynamic stability after 6 months. The results attained, showed higher stability and anti-oxidant capability of LO-NE than LO alone. The study suggested that formulated nanoemulsion can be effectively used as a highly efficacious biologically active alternative nanoformulation against many transdermal disorders.

Share and Cite:

Kaur, H. , Pancham, P. , Kaur, R. , Agarwal, S. and Singh, M. (2020) Synthesis and Characterization of Citrus limonum Essential Oil Based Nanoemulsion and Its Enhanced Antioxidant Activity with Stability for Transdermal Application. Journal of Biomaterials and Nanobiotechnology, 11, 215-236. doi: 10.4236/jbnb.2020.114014.

Cited by

[1] The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review
Antioxidants, 2023
[2] Microencapsulation of Citrus aurantifolia essential oil with the optimized CaCl 2 crosslinker and its antibacterial study for cosmetic textiles
RSC …, 2022
[3] Preparation, Characterization and Biological Activities of an Oil-in-Water Nanoemulsion from Fish By-Products and Lemon Oil by Ultrasonication Method
Molecules, 2022
[4] Lantana camara L. essential oil mediated nano-emulsion formulation for biocontrol application: anti-mosquitocidal, anti-microbial and antioxidant assay
Archives of Microbiology, 2022
[5] Preparation and evaluation of a nanoemulsion containing cordycepin and its protective effect on skin
Journal of Dispersion …, 2022
[6] Synthesis and properties of core-shell thymol-loaded zein/shellac nanoparticles by coaxial electrospray as edible coatings
Materials & Design, 2021

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.