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Abstract 
In this paper, the global stability of free smoking equilibrium point was eva-
luated and presented graphically. The linear stability of a developed mathe-
matical model illustrates the effect on the population of chain, mild and pas-
sive smokers. MATLAB programming was used to simulate the solutions, the 
reproduction number 0R  and the nature of the equilibria. 
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1. Introduction 

Castillo et al. [1] proposed a simple mathematical model for giving up smoking. 
They assumed that the total population consists of three populations: potential 
smokers, i.e. people who do not smoke yet and may become smokers in the fu-
ture (P), smokers (S) and people who have already quit smoking permanently 
(Q). Since then, many articles were published further developing this model. The 
modifications were produced either by adding a factor or a new population (see 
e.g. [2] [3] [4] [5]). However, in 2008, Sharomi and Gumel [6] modified the 
model by including a class of smokers who temporarily quit smoking. They stu-
died the global stability of smoker-free equilibrium (SFE). In 2011, Zaman [7] 
derived the giving-up smoking model taking into account the occasional smok-
ing population and presented its qualitative behavior. In 2014, Z. Alkhudhari et 
al. [8] modified the model by assuming that the smoking classes are divided into 
occasional and chain smokers and they studied the existence and stability of 
equilibrium points. In 2017, Matintu [9] proposed a new modification by consi-
dering the moderate, chain smokers, potential smokers, and temporarily quit 
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smokers. In 2019, Ana et al. [10] constructed a new smoking model where the 
total population was partitioned into three classes: passive smoker 1E  (those at 
risk from others’ smoking), infected I (people who are addicted to tobacco and 
can pass on the habit) and 2E  (people who have stopped smoking but are at 
risk of relapse) described as: 

( )1 1 1 1,E E I v E
N
β µ= ∆ − − +                    (1a) 

( )1 ,I E I I
N
β µ θ= − + +                      (1b) 

( )2 2 2 ,E I E I v I
N
βθ µ ω= − − + +                 (1c) 

where ( )1 1E E t= , ( )I I t=  and ( )2 2E E t= . The parameters ( 1 2, , , , ,v vµ ω β  ) 
and θ  represent respectively the rate of natural death, exit rate from 1E  to 
healthy population, exit rate form 2E  to healthy population, death rate of 
ex-smoker, infection rate of smoking, death rate of smokers and exit rate from I 
to 2E . ∆  is the average number of healthy people who are at risk of becoming 
active smokers. 

Our paper is divided into: section (2), evaluating the global stability of the 
model in [10]. The modification of the model was stated in section (3) to include 
two classes of smokers: chain smokers 1S  and mild smokers 2S , with the full 
study of stability analysis and effect of each group on the population behavior 
(qualitative behavior). 

2. The Global Stability of Equilibria 

The equilibria of smoking-free equilibrium point in system (1a)-(1b), are given 
in [10] as 

( )1 1,0 0 2,0
2

, , ,0,0 ,P E I E
vµ

 ∆
= =  + 

                (2) 

and the basic reproduction number 0  is defined as 0
β

µ θ
=

+ +



. 

Theorem 1. 
If 4β δ≤  and 0 1≤ , then 1P  is globally asymptotically stable. 
Proof. 
The Lyapunov function is defined as 

1 1
1 1,0 2

1,0 1,0

1 ln ,
E EV E E I

E E
 

= − − + +  
 

 

hence, 

1,0
1 2

1

1 ,
E

V I E
E

 
= − + + 
 

                         (3) 

By substituting (1a)-(1b) in (3), 
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( ) ( )

( ) ( )

1,0
1 1 1 1 1 2

1

2 2 2

1

,

E
V E I v E I E E

E N N

I I E I v E
N

β βµ

βµ θ θ µ ω

  = − ∆ − − + + +  
  

− + + + − − + +





 

( )( ) ( )

( ) ( )

1,0
1 1 1 1 0,1 1 2

1

2 2 2

1

,

E
V v E E I E I I E E

E N N N

I I E I v E
N

β β βµ

βµ θ θ µ ω

 
= − ∆ − + − + + + 
 

− + + + − − + +





 

Since 1,0E N= , then we have 

( ) ( )( )1,0
1 1 1 2 2

1

1 .
E

V E E I
E

δ δ β µ
 

= − ∆ − − + − + 
 

   

where 1 1vδ µ= +  and 2 2vδ µ ω= + + . Using (2) we get 

( ) ( )( )
2

1,0 1
1 1 2 2

1

.
E E

V E I
E

δ δ β µ
−

= − − + − +   

By re-arranging the equation, we get 

( ) ( )( ) ( )
2

1,0 1 2
1 1 2 0 2 3 0 2 4

1 3

1 ,
E E

V E E I
E

δ
δ δ δ β δ

δ

−
= − − + − + −         (4) 

where 3δ µ θ= + +  and 4δ µ= +  . 
It is clear that 1 0V ≤  when 4β δ≤  and 0 1≤  for all 1 2, , 0E I E > . Hence, 

the solutions of systems (1) is limited to Ω , the largest invariant subset of 

1 0V = , where Ω  is the region of solutions given in [10]. From (4), we see that 

1 0V =  if and only if 1 1,0E E=  and 2 0I E= = . By using LaSalle’s invariance 
principle, the point 1P  is globally asymptotically stable.  

□ 

3. The Modified Model of Smoking 

In this section, system (1) was modified to include two classes of smokers, chain 
smokers 1S  and mild smoker 2S  (see Figure 1). Accordingly, our model of 
ordinary differential equations (ODEs) are 
 

 
Figure 1. Graphic presentation of system (6). 
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( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 1Δ ,E t E t S t S t v E t
N
β η µ= − + − +           (5a) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 2 1 2 1 1 1 ,S t a S t S t E t E t S t
N
β η µ θ= + + − + +       (5b) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 1 2 1 2 2 2 21 ,S t a S t S t E t E t S t
N
β η µ θ= − + + − + +     (5c) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 1 1 2 2 2 1 2 2 2 ,E t S t S t E t S t S t v E t
N
βθ θ η µ ω= + − + − + +  (5d) 

where the parameters 1 2, , ,v vβ ω  and µ  are defined as in the system (1a)-(1c), 

1  and 2  are death rate of chain smokers 1S  and mild smokers 2S  respec-
tively, while parameters 1θ  and 2θ  are exit rates from chain smokers and mild 
smokers to the healthy population (outside population N). We assume that the 
exposed people become either a chain or mild smoker at probabilities (1 − a) and 
a with 0 1a< < ). The chain smokers have a higher probability of generating 
more new smokers (by a factor 1η ≥  relative to the mild smokers). A simpli-
fied form of the model (5) can be written as 

( ) ( ) ( ) ( )( ) ( )1 1 1 2 1 1Δ ,E t E t S t S t d E t
N
β η= − + −           (6a) 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 2 1 2 2 1 ,S t a S t S t E t E t d S t
N
β η= + + −        (6b) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 1 2 1 2 3 21 ,S t a S t S t E t E t d S t
N
β η= − + + −      (6c) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 2 2 1 2 42 2 ,E t S t S t E t S t S t d E t
N
βθ θ η= + − + −    (6d) 

where 1 1d vµ= + , ( )2 1 1d µ θ= + + , ( )3 2 2d µ θ= + +  and ( )4 2d vµ ω= + + . 
The initial conditions of system (6), are given by 

( ) ( )1 1E α ϕ α= , ( ) ( )1 2S α ϕ α= , ( ) ( )2 3S α ϕ α= , ( ) ( )2 4E α ϕ α=  

where α ∈R , ( ) ( ) ( ) ( )( ) 4
1 2 3 4, , , Cϕ α ϕ α ϕ α ϕ α +∈ R  and C is the Banach space 

of continuous functions mapping the interval ( ],0−∞  into 4
+R . By the funda-

mental theory of functional differential equations [11], system (6) has a unique 
solution satisfying the initial conditions above. 

3.1. Non-Negativity and Boundedness of Solutions 

Theorem 2. For system (6), there exist a positive number K such that the com-
pact set Λ ,  

( ){ }4
1 1 2 2 1 1 2 2Λ , , , : 0 , , , .E S S E E S S E K+= ∈ ≤ ≤R  

is positively invariant. 
Proof. We have  

( )
1

1 0
Δ 0

E
E t

=
= > , 

( ) ( )
1

1 2 1 20
0

S
S t a S E E

N
β

=
= + >  for   2 1,S E  and 2 0E > ,  

( ) ( ) ( )
2

2 1 1 20
1 0

S
S t a S E E

N
β η

=
= − + >  for   1 1,S E  and 2 0E > ,  
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( )
2

2 1 1 2 20
0

E
E t S Sθ θ

=
= + >  for   1S  and   2 0S > , 

so the solutions are non-negative. Now, to prove the boundedness of the solu-
tions, we let ( ) ( ) ( ) ( ) ( )1 1 2 2N t E t S t S t E t= + + + , hence 

( ) ( )( )

( ) ( )( ) ( )

( )

1 1 2 1 1 1 2 1 2 2 1 3 2

1 2 1 2 1 1 2 2 2 1 2 4 2

1 1 5 1 6 2 4 2

Δ

1

Δ Δ ,

N E S S d E a S S E E d S d S
N N

a S S E E S S E S S d E
N N

dd E d S d S d E N t

β βη η

β βη θ θ η

= − + − + + + − −

+ − + + + + − −

≤ − − − − ≤ −



 

where 5 1d µ= +  , 6 2d µ= +   and { }min id d= , 1,4,5,6i = . That is, if 
( )0 0N ≤  then ( )N t K<  where ΔK d= . It follows that if  
( ) ( ) ( ) ( )1 1 2 20 0 0 0E S S E K+ + + ≤  then ( ) ( ) ( ) ( )1 1 2 2, , ,E t S t S t E t K≤ . 

□ 

3.2. The Equilibria and Basic Reproduction Number 0  

Theorem 3. 1) If 0 1≤ , then there exists only one equilibrium point called 
smoking-free equilibrium 0P . 

2) If 0 1> , there exist two equilibria that are smoking-free equilibrium 0P  
and smoking present equilibrium 1P . 

Proof. 
The system (6) has two equilibrium points which are: Smoking-free equili-

brium point  

( )0 1,0 1,0 2,0 2,0
1

Δ, , , ,0,0,0 ,P E S S E
d

 
= =  

 
             (7) 

and smoking present equilibrium point 

( )* * * *
1 1 1 2 2, , ,P E S S E=  

where 

( ) ( )
* 0
1

0 0 1

Δ
,

1
E

vβ µ
=

− + +


 
 

( ) ( )0* *
1 1 2

0 2

1
,S a x E

d
β −

= +



 

( ) ( ) ( )0* *
2 1 2

0 3

1
1 ,S a x E

d
β −

= − +



 

( ) ( )
( )

0 2 2 1 3*
2

2 3 2 0 0 1

Δ 1 1
,

1

a d a d
E

d d x d
β θ θ

β

− − +  =
 − + 



 
 

and 

( )
0

1
0 1 0

Δ
,

1
x

d β
 

=   + − 


 

 

( ) ( )( )0
2 4 2 6 3 5

0 2 3

1
1 .x d d d a ad d

d d
β −

= + − +  
 



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Using the next generation method [12], the matrices F and V are 

( ) ( )

1

2

3

4

0 0 00 0
0 0 00 0

, ,
0 0 00 1 1 0
0 0 00 0 0 0

d
da a

F V
da a

d

ηβ β
ηβ β
ηβ β

− −   
  
  = =
  − −
  

   

 

and hence evaluate the reproduction number 0  which is the largest eigenva-
lue of ( ) 1F V − , 

( ) 2 3
0

2 3

1
.

a d a d
d d

η
β

− +
=                      (8) 

□ 

3.3. Local Stability of Smoker Free Equilibrium 

Theorem 4. 
If 0 1< , then 0P  is locally asymptotically stable. 
Proof. The Jacobian matrix of system (6) at 0P  is  

 ( ) ( ) ( )

1

2
0

3

1 2 4

0
0 0

,
0 1 1 0
0

d
a d a

J P
a a d

d

ηβ β
η β β

βη β
θ θ

− − 
 − =
 − − −
 

− 

 

with the eigenvalues 1 1dλ = − , 2 4dλ = − , and 3,4 c bλ = ± , where 

( ) [ ]3 2
1 1 ,
2

c a d a dβ β η = − − + −    
 

and 

( ) ( ) ( )( ) ( )( )22
0 2 3

1 2 1 1 2 1 .
2

b d a d a a aβη β ηβ β= − + − + − − + −  

It is easy to show that 0c <  when 0 1< . To study the nature of b, we start 
with the fact that, 

( )( )2 3 2 31 ,a d a d d dβ η− + <  

hence, 

( ) 2 2 31 a d d dβ − < , and 3 2 3a d d dβ η < , 

( ) 31 a dβ − < , and 2a dβ η < . 

Next, we use the numerical approach by assuming two small positive real 
numbers 1ξ  and 2ξ  such that 1 2a dβη ξ+ =  and ( ) 2 31 a dβ ξ− + =  hence 

( ) ( )( )

( )

( ) ( )

2 2
0 1 2 2 1 3 2

2 2
0 1 2 2 3 2 2 1 3 1 2

2
0 1 2 2 3 2 2 1 3

1 2 1 2
2

2 1 11
2 2 2
2 11 .

2 2

b d d

d d d d

d d d d

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

= − + + + − −

= − + + + − − +

= − + + + − −






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Since ( )2
1 2

1 0
2
ξ ξ+ ≅  and 2 3 1 2 2 3d d d dξ ξ< +  then 2 3 2 3d d d d< +  and 

( ) ( )2
0 1 2 2 3 2 2 1 3

11 0.
2

d d d dξ ξ ξ ξ− + + + − − <  

Thus 3,4λ  are complex numbers. Finally, we see that all the real parts of 
, 1, 2,3, 4i iλ =  are negative so the point 0P  is locally asymptotically stable. 

□ 

3.4. The Global Stability of Smoker Free Equilibrium 

Theorem 5. If 5 6,d dβη β≤ ≤  and 0 1≤ , then 0P  is globally asymptotically 
stable. 

Proof. As done in Theorem (1), we defined the Lyapunov function as 

1 1
2 1,0 1 2 2

1,0 1,0

,1 ln
E EV E S S E

E E
 

= − − + + +  
 

 

hence 

1,0
2 1 1 2 2

1

1 .
E

V E S S E
E

 
= − + + + 
 

                       (9) 

By substituting (6) in (9), 

( ) ( )( )

( ) ( )( ) ( )

( ) ( )

1,0
2 1 1 2 1 1 1 2 1 2 2 1

1

1 2 1 2 3 2 1 1 2 2 2 1 2 4 2

1,0
1 1 1,0 1 2 2 1 3 2 1 1 2 2 4 2

1

1 Δ

1

1 Δ

E aV E S S d E S S E E d S
E N N

a
S S E E d S S S E S S d E

N N
E

d E E S S d S d S S S d E
E N

β βη η

β βη θ θ η

β η θ θ

  = − − + − + + + −  
  

−
+ + + − + + − + −

 
= − − + + − − + + − 
 



 

By using the equilibrium conditions 1 1,0Δ d E=  and 1,0E N= , 

( ) ( ) ( )

( ) ( ) ( )

[ ]( )

2
1 1,0

2 1 5 1 6 2 4 2
1

2
1 1,0

1 5 1 6 2
1

4
1 0 2 0 4 2

1

1 ,

E E
V d d S d S d E

E

E E
d d S d S

E

d c E d E
c

βη β

βη β

 − = − + − + − −
 
 
 − = − + − + −
 
 

+ − −



 

         (10) 

where 1 2 3c d d=  and ( )2 2 31c a d a dβ η= − + . Clearly 2 0V ≤ , if 5dβη ≤ , 

6dβ ≤  and 0 1≤ , for all 1 1 2 2, , , 0E S S E > . Hence, the solutions of system (6) 
are limited to ω , the largest invariant subset of 2 0V = . From (10) we see that 

2 0V =  if and only if 1 1,0E E=  and 1 2 2 0S S E= = = . Using LaSalle’s inva-
riance principle, we show that 0P  is globally asymptotically stable.  

□ 

3.5. Numerical Simulations and Discussion 

Using MATLAB programming, the solution of system (6) is evaluated by as-
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suming values for the parameters as Δ 50= , 1 0.03= , 2 0.02= , 1 0.4θ = , 

2 0.5θ = , 0.05µ = , 1 0.2v = , 2 0.3v = , 200N = , and   0.001ω =  with two 
sets of values for ,β η  and a.  

Set (1): 0 1≤ , 0.05β = , 1.5η = , and 0.4a = . 
Set (2): 0 1> , 0.5β = , 2.5η = , and 0.6a = . 
A three sets of values are applied and tested for the initial conditions: 
IC1: ( ) ( ) ( ) ( )1 1 2 20 890, 0 120, 0 90, 0 40E S S E= = = = . 
IC2: ( ) ( ) ( ) ( )1 1 2 20 480, 0 60, 0 40, 0 30E S S E= = = = . 
IC3: ( ) ( ) ( ) ( )1 1 2 20 290, 0 30, 0 20, 0 10E S S E= = = = . 
In Figures 2-5, the behavior of each smoking population is plotted as time 

increases. Figure 2 shows the fast decrease of passive smokers for both 0 1≤  
and 0 1>  within a short period of time and reaches or approaches the steady  
 

 
Figure 2. The plot of the passive smokers ( 1E ), for set (1), 0 1<  and set (2), 0 1>  
together with IC1 (dash), IC2 (solid) and IC3 (dash dot). 
 

 
Figure 3. The plot of the chain smokers ( 1S ), for set (1), 0 1<  and set (2), 0 1>  
together with IC1 (dash), IC2 (solid) and IC3 (dash dot). 

https://doi.org/10.4236/ajcm.2020.101003


A. A. Alshareef, H. A. Batarfi 
 

 

DOI: 10.4236/ajcm.2020.101003 39 American Journal of Computational Mathematics 
 

 
Figure 4. The plot of the mild smokers ( 2S ), for set (1), 0 1<  and set (2), 0 1>  to-
gether with IC1 (dash), IC2 (solid) and IC3 (dash dot). 
 

 
Figure 5. The plot of the ex-smokers ( 2E ), for set (1), 0 1<  and set (2), 0 1>  to-
gether with IC1 (dash), IC2 (solid) and IC3 (dash dot). 
 
state. Similar behavior was observed on the chain and mild populations for 

0 1≤ , Figure 3 and Figure 4 which reached zero as time increased. For 

0 1> , a peak appears at the beginning of the time and decreases to the steady 
state as time increases. This behavior was seen on the ex-smokers’ population for 
both 0 1≤  and 0 1> . The choice of initial values of the three sets has no 
effect on the behaviour of the different population types. It tends to zero for the 
chain, mild and ex-smokers for 0 1<  as time increases. 2E  behaves similarly 
for any initial conditions, where we observe that 2E  tends to zero ( 0 1≤ ) or 
steady state value ( 0 1> ). Similarly for other types of population which means 
that 0P  and 1P  are globally asymptomatically stable. Figure 6 shows the phase 
plane space plots that explain the relationships between the different populations. 
These relationships are the same for different initial conditions. Next, we con-
sider the relationships of ex-smokers’ population versus the chain/mild smokers  
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Figure 6. The phase plane plot of the populations of system (6) using the values of the parameters of set (1) with the initial condi-
tions ( )1 0 30E = , ( )1 0 290S = , ( )2 0 20S =  and ( )2 0 10E = . 
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1S  and 2S . As the chain smokers’ number decreases, we notice an increase on 
the population of ex-smokers ( 2E ) up to a maximum value at around one third 
of chain smokers’ initial values and around two-thirds of the mild smokers’ ini-
tial value, Figure 5(c) and Figure 5(d). Finally, Figure 5(e) illustrates the im-
pact of decreasing the number of chain smokers which leads to a decrease in the 
number of mild smokers. 

As we observe from the Figures, we stress the importance of decreasing the 
number of chain smokers (either by using the media or educational direct semi-
nars) on increasing the number of passive smokers (as the ex-smokers and mild 
are both joined) to create a healthy action. 

Finally, we observe that when the contact between the two classes of smokers 
with the other populations is weak (small β) then the effect of the smoker’s 
classes (chain/mild) was not being enough to generate the new individuals to the 
smokers’ classes. So, the number of smoker’s groups decreased and approached 
to zero (because the death or stop smoking). On the other hand, if β increase, we 
found that the number of smoker’s groups increased also, since the rate of inte-
raction between them and other groups (or the effect by smokers) was growing. 
However, we can see that, one of the solutions which is introduced to reduce the 
spread of smoking is prevent it in the larger places (such as educations) in order 
to minimize the rate of contact to be very small or zero. 

4. Conclusion 

The modified system/model shows interesting behavior between the different 
types of smoker’s populations. The main advantage was the more decrease in the 
size of heavy/mild smokers in comparison with earlier studies. This should en-
courage others (ex- or passive) smokers to interact better with chain/mild 
smokers to increase the number of quitters. By comparing our results with the 
results in [10], we see that they are approximately similar to giving the behavior 
of each group, and the difference is that, our model explains and shows the effect 
of both of the chain smokers and mild smokers separately on the exposed popu-
lation. Hence, we get that the chain smokers affect more than the mild smokers 
on the exposed groups. So, our model is more real. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Castillo, C., Jordan, G. and Rodriguez, A. (1997) Mathematical Models for the Dy-

namics of Tobacco Use, Recovery, and Relapse. Technical Report Series. 

[2] Awan, A., Sharif, A., Hussain, T. and Ozair, M. (2017) Smoking Model with Crav-
ings to Smoke. Advanced Studies in Biology, 9, 31-41.  
https://doi.org/10.12988/asb.2017.61245 

[3] Alkhudhari, Z., Al-Sheikh, S. and Al-Tuwairqi, S. (2014) Global Dynamics of a Ma-

https://doi.org/10.4236/ajcm.2020.101003
https://doi.org/10.12988/asb.2017.61245


A. A. Alshareef, H. A. Batarfi 
 

 

DOI: 10.4236/ajcm.2020.101003 42 American Journal of Computational Mathematics 
 

thematical Model on Smoking. Applied Mathematics, 2014, Article ID: 847075. 
https://doi.org/10.1155/2014/847075  

[4] Sallew, G. (2016) Mathematical Analysis on the Spread and Control of Global Dy-
namics of Tobacco Smoking with Induced Death. Journal of Mathematics and 
Computer, 3, 15-26. 

[5] Lahrouz, A., Omari, L., Kiouach, D. and Belmaâti, A. (2011) Deterministic and 
Stochastic Stability of a Mathematical Model of Smoking. Statistics and Probability 
Letters, 81, 1276-1284. https://doi.org/10.1016/j.spl.2011.03.029  

[6] Sharomi, O. and Gumel, A. (2008) Curtailing Smoking Dynamics: A Mathematical 
Modeling Approach. Applied Mathematics and Computation, 195, 475-499.  
https://doi.org/10.1016/j.amc.2007.05.012 

[7] Zaman, G. (2011) Qualitative Behavior of Giving up Smoking Models. Bulletin of 
the Malaysian Mathematical Sciences Society, 34, 403-415. 

[8] Alkhudhari, Z., Al-Sheikh, S. and Al-Tuwairqi, S. (2014) The Effect of Occasional 
Smokers on the Dynamics of a Smoking Model. International Mathematical Forum, 
9, 1207-1222. https://doi.org/10.12988/imf.2014.46120  

[9] Matintu, S.A. (2017) Smoking as Epidemic: Modeling and Simulation Study. Amer-
ican Journal of Applied Mathematics, 5, 31-38. 
https://doi.org/10.11648/j.ajam.20170501.14 

[10] Pulecio-Montoya, A., Lopez-Monteneqro, L. and Benavides, L. (2019) Analysis of a 
Mathematical Model of Smoking. Contemporary Engineering Sciences, 12, 117-129.  
https://doi.org/10.12988/ces.2019.9517  

[11] Hale, J. and Lunel, S. (1993) Introduction to Functional Differential Equations. 
Science and Business Media. https://doi.org/10.1007/978-1-4612-4342-7  

[12] Heffernan, J., Smith, R. and Wahl, L. (2005) Perspectives on the Basic Reproduction 
Ratio. Journal of the Royal Society Interface, 2, 281-293.  
https://doi.org/10.1098/rsif.2005.0042 

 
 

https://doi.org/10.4236/ajcm.2020.101003
https://doi.org/10.1155/2014/847075
https://doi.org/10.1016/j.spl.2011.03.029
https://doi.org/10.1016/j.amc.2007.05.012
https://doi.org/10.12988/imf.2014.46120
https://doi.org/10.11648/j.ajam.20170501.14
https://doi.org/10.12988/ces.2019.9517
https://doi.org/10.1007/978-1-4612-4342-7
https://doi.org/10.1098/rsif.2005.0042

	Stability Analysis of Chain, Mild and Passive Smoking Model
	Abstract
	Keywords
	1. Introduction
	2. The Global Stability of Equilibria
	3. The Modified Model of Smoking
	3.1. Non-Negativity and Boundedness of Solutions
	3.2. The Equilibria and Basic Reproduction Number 
	3.3. Local Stability of Smoker Free Equilibrium
	3.4. The Global Stability of Smoker Free Equilibrium
	3.5. Numerical Simulations and Discussion

	4. Conclusion
	Conflicts of Interest
	References

