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Abstract 
Poverty has always been one of the topics concerned by governments and re-
searchers all over the world, especially in developing countries. Remote sens-
ing image is widely used in poverty estimation because of its large area obser-
vation, timeliness and periodicity. In this study, we explore the applicability of 
convolution neural network (CNN) combined with remote sensing image in 
regional poverty estimation. In the 2016 economic indicators estimation of 
Guizhou Province, China, the Pearson coefficient of per capita GDP (PCGDP) 
reached 0.76, which means that the image features extracted by CNN can ex-
plain the change of PCGDP of county level economic indicators up to 76%. 
Compared with other methods, our method still has high precision. Based on 
these results, we found that convolutional neural network combined with re-
mote sensing image can be used in regional poverty estimation. 
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1. Introduction 

Poverty as a problem has been perplexing governments all over the world, espe-
cially developing countries. It is very important for policy makers and research-
ers to analyze the conditions and causes of poverty, which is helpful to reduce 
poverty. The traditional way of poverty measurement mainly depends on the 
ground survey data [1]. However, it takes a long time and is expensive to ob-
tained data [2]. Some countries have not even collected such data [3]. 

Because remote sensing data can provide large-scale, multi-temporal and spa-
tial resolution surface information, it is widely used in regional poverty estima-
tion. As a new kind of remote sensing data, nighttime light remote sensing data 
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records the artificial light in human settlements and is widely used in poverty es-
timation [4] [5]. Various socio-economic parameters have been estimated by 
using nighttime light remote sensing data, such as: carbon dioxide ( 2CO ) emis-
sions [6] [7], gross domestic product (GDP) [8] [9], population [10] [11], etc. 
There are two kinds of widely used nighttime light data, which are the nighttime 
light composite data obtained by the Defense Meteorological Satellite Pro-
gram’s Operational Line scan System (DMSP-OLS) [12] [13] and the new gen-
eration nighttime light composite data from the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) Day-Night Band (DNB) carried by the Suomi National 
Polar-orbiting Partnership (NPP) Satellite [14]. DMSP-OLS data have some 
shortcomings, such as strong light saturation, coarse spatial resolution and so on 
[15]. NPP-VIRS data is calibrated to DMSP-OLS Data with better quality. In 
terms of spatial resolution, 15 arc seconds, 500 meters DMSP-OLS data are bet-
ter than 30 arc seconds, and 1000 meters NPP-VIRS data can provide more ar-
tificial lighting information at night in human settlements [16] [17]. In the use of 
DMSP-OLS data, Noor et al. [18] used the data to calculate the Pearson coeffi-
cient of household asset index; the best result was 0.64, which confirmed the 
correlation between DMSP-OLS data and socio-economic indicators. Li et al. 
[19] explored the potential of NPP-VIRS night light images for regional eco-
nomic modeling in China. Yu et al. [20] used NPP-VIRS data to estimate pover-
ty at the county level in China. 

In a recent paper [21], the features extracted from remote sensing images 
trained by convolution neural networks (CNNs) are used to estimate poverty, 
which explains up to 75% of the changes in local economic and living indicators. 
All the satellite image data used in this study are open and free, which promotes 
an important step in using such satellite image data to estimate economic indi-
cators without expensive and time-consuming ground statistical surveys. There 
is no assessment of transfer learning methods to predict changes in economic 
well-being over time in specific regions. Perez et al. [22] used the Wasserstein 
generative adversarial networks (WGAN) to construct the semi supervised clas-
sification multitask learning to estimate the household asset wealth index (AWI) 
in Africa. They constructed an end-to-end multitask learning model for a series 
of classification tasks, including luminous intensity, population density, distance 
to the nearest road, land cover type and AWI. However, the WAGN model is 
difficult to train. In the development of convolution neural network, He et al. 
proposed the deep residual network (ResNet) [23] in 2014, and solved the prob-
lem of gradient disappearance caused by increasing depth in the neural network. 
Lin et al. proposed the feature pyramid network (FPN) [24] in 2017, obtained 
the feature layers of different resolutions, and improved the detection accuracy 
of small objects. Based on the development of these technologies [21] [22] [23] 
[24], we hope to combine ResNet-50 and FPN to build a classification model for 
training remote sensing images to obtain image features reflecting regional 
economy. Different characteristic map P2 to P5 of FPN is used to classify four 
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kinds of remote sensing data, which are nighttime light data that can reflect the 
artificial light in human settlements, Normalized Vegetation Index (NDVI) [25] 
[26] data reflecting regional vegetation conditions, Modified Normalized Dif-
ference Water Index (MNDWI) [27] effectively distinguishes Water and urban 
areas, and Normalized Difference Built Index (NDBI) [28] data reflecting urban 
and non-urban regional conditions. Different from the previous research [21], 
[22], we choose ResNet-50 and FPN to build a new convolution neural network 
model to classify and learn different remote sensing data, so that the convolution 
neural network model can learn more characteristics that can reflect the changes 
of regional economy. When the model is trained, the features are extracted for 
the estimation of economic indicators. The details of the experiment are de-
scribed in subsequent sections. 

2. Materials 
2.1. Investigation Area 

Guizhou (Figure 1) is a provincial administrative region of the People’s Repub-
lic of China. Its capital is Guiyang. It is located in the southwest of China and 
consists of 88 cities, districts and special zones. The land resources in the study 
area are mainly mountains and hills, rich in mineral resources, less plains and 
less cultivated land per capita. Due to historical, geographical, cultural and po-
litical factors, the economic level of Guizhou Province has always been at the 
lowest level in the country. In 2012, the office of the leading group for poverty 
alleviation and development of the State Council issued a list of 665 key counties 
for poverty alleviation and development work in China, aiming to lift these 
counties out of poverty. In 2016, Guizhou Province was composed of nine cities 
and prefectures: Guiyang, Liupanshui, Zunyi, Anshun, Bijie, Tongren, Qianxi-
nan, Qiandongnan and Qiannan. Among them, there are 66 poor counties, the 
number of which is far more than that of other regions, with a GDP of 1177.673 
billion yuan, ranking 24th in 31 provinces, regions and cities in China [29]. 

2.2. Dataset 

In this study, the experimental data include 2016 landsat 8 image, NPP-VIRS 
nighttime light image and Guizhou annual statistical yearbook data. The landsat 
8 image of 88 cities, districts and special zones in Guizhou is generated by 
Google Earth Engine’s Landsat Simple Composite tool. We divide the image of 
88 regions into 256 × 256 pixels size image tiles. Because the vector boundary of 
each region is irregular, the whole black image will be removed. Spectral index 
images were obtained from landsat 8 images collected on the Google Earth En-
gine, which were similarly divided into image tiles for trained.  

The nighttime light data acquired by the Suomi National Polar-orbiting Part-
nership (NPP) Satellite and two types of NPP-VIRS data are available on the 
NOAA web site: annual and monthly data. Download 2016 annual nighttime 
light data from NOAA website and the data is processed and the temporal light  
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Figure 1. Case study area: Guizhou is composed of 88 cities, districts and special 
zones. The economic development level of each region is quite different, among 
which the regional economic development level near the provincial capital city is 
better than other regions far away from the provincial capital. 

 
and some non-light values are removed. Similarly, the nighttime light images of 
each city, district and special zone are trained in small tiles, just as we did with 
landsat 8 satellite images. The 2016 statistical yearbook was downloaded from 
Guizhou bureau of statistics, in which we collected some economic indicators: 
Per capita gross domestic product (PCGDP), total retail sales of consumer goods 
(TRSCG) and general public financial budget revenue (GPFBR). Table 1 shows 
the data used in the experiment. 

3. Methods 

Our method is to use convolutional neural network (CNN) to extract features 
from remote sensing images, and then use the extracted features to estimate 
economic indicators. The specific steps are as follows: First, the deep residual 
network (ResNet-50) and the feature pyramid network (FPN) are combined to 
establish the classification model. After the P2-P5 feature map of FPN, a global 
average pool layer is added, and then a classifier composed of 1024 neurons and 
a softmax activation layer is constructed to classify the nighttime light data and 
the spectral index image. Secondly, when the model is trained, the output of the 
global average pooling layer is extracted as the feature, just like the previous re-
search [22] [30]. Finally, the ridge regression model is constructed to estimate 
the economic indicators using the features obtained in the previous step and the 
actual ground economic survey data. It is noted that in ridge regression, the 
double nested cross validation method is used to estimate the economic indica-
tors, and the inner loop of cross validation is used to find the optimal weight of 
the regular term (super parameter). This weight is used to predict the economic 
indicators of the test set in the outer loop of double nested cross validation. The 

https://doi.org/10.4236/ars.2019.84006


P. Wu, Y. M. Tan 
 

 

DOI: 10.4236/ars.2019.84006 93 Advances in Remote Sensing 
 

Pearson coefficient (R2) of the actual economic indicator and the estimated eco-
nomic indicator is used to evaluate the performance of our method. The overall 
method flow is shown in Figure 2. 

4. Experimental and Results 

In Section 3, ResNet-50 and FPN are used for classification tasks. The classifiers 
after P2 feature layer are used for classification of nighttime light intensity. Si-
milarly, the classifiers after P3 to P5 feature layer are used for classification of 
NDVI, MNDWI and NDBI respectively. The classification categories of four 
kinds of data are confirmed by Gaussian mixture model. The four data classifi-
cation categories are shown in Table 2. The input of convolutional neural net-
work is Landsat 8 image and the output is the category of nighttime light inten-
sity (NLI), NDVI, MNDWI and NDBI. Table 3 shows the training accuracy and 
test accuracy of the four classification tasks. After the training of the model, the 
output of the global average pooling layer in the convolutional neural network is 
extracted as the feature, and the 256-dimensional featurevectors of the four clas-
sification tasks are combined into a 1024-dimensional featurevectorsas the im-
age features extracted from the remote sensing image by CNN. Finally, we use 
the economic indicator data from the statistical yearbook and the corresponding 
image features extracted from the remote sensing image by CNN to train the 
ridge regression model to estimate the economic indicator. 

In ridge regression model, we use principal component analysis (PCA) to re-
duce the dimension of features to avoid over fitting, in which 1024-dimensional 
feature vectors are reduced to 100-dimensional feature vectors. The 10-fold 
cross-validation method was used to estimate the 2016 economic indicators of 
Guizhou province, and the process was repeated 20 times. Finally, we took the 
average value of all R2 of 20 times as our final result. In this study, we estimate 
the three economic indicators of PCGDP, TRSCG and GPFBR. The Pearson 
coefficients of the three economic indicators are 0.76, 0.72 and 0.65 respectively, 
as shown in Figure 3, Figure 4 and Figure 5. Compared with the previous expe-
rimental results [21] [30], although the estimated economic indicators are dif-
ferent, the Pearson coefficient (R2) of economic indicators is also in this range, 
indicating that our method can be applied to the economic indicators estimation 
of Guizhou Province, and the estimated economic indicators result is reasonable. 

In order to test whether our method is better than other methods in the esti-
mation of economic indicators, we also calculate the results of estimating eco-
nomic indicators directly using the nighttime light (NTL) data. The sum of night 
light of cities, districts and special zones in Guizhou Province is used to estimate 
three economic indicators by linear regression model, among which the R2 
(Table 4) of PCGDP, TRSCG and GPFBR are 0.31, 0.58 and 0.5 respectively.  

5. Conclusions 

The present study demonstrates that CNN combined with remote sensing image 
to estimate poverty and identify regional poverty, especially the estimation of 
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economic indicators, provides a potentially quick and inexpensive method. 
These features extracted by deep learning can explain up to 76% of the variation 
in local economic outcomes. 

 
Table 1. Dataset characteristics used in this study. 

Dataset Spatial resolution Temporal resolution Time Line 

Landsat 8 image 30 m 1 year 2016 

Spectral index image 30 m 1 year 2016 

Nighttime light data 500 m 1 year 2016 

Economic survey data City, district and special zone 1 year 2016 

 
Table 2. Classification category interval of four kinds of data. 

Class NLI NDVI MNDWI NDBI 

1 0 - 0.005 −5.62 - 0.25 −0.38 - −0.22 −0.39 - −0.23 

2 0.005 - 0.17 0.25 - 0.51 −0.22 - −0.10 −0.23 - −0.10 

3 0.17 - 33.45 0.51 - 0.77 −0.10 - 0.06 −0.10 - 0.03 

 
Table 3. Classification category interval of four kinds of data. 

Data Training accuracy Testing accuracy 

NI 99.84% 90.62% 

NDVI 100% 100% 

MNDWI 100% 93.75% 

NDBI 100% 100% 

 
Table 4. The Pearson coefficient results of the economic indicators estimated by the 
linear regression model and the actual economic indicators. 

Method PCGDP TRSCG GPFBR 

Linear regression model (with NTL data) 0.31 0.58 0.5 

 

 
Figure 2. Method flow. 
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Figure 3. The Pearson coefficient (R2) of the predicted PCGDP and the actual 
PCGDP, in which the blue line is the best fitting line. 

 

 
Figure 4. The Pearson coefficient (R2) of the predicted TRSCG and the actual 
TRSCG, in which the blue line is the best fitting line. 

 

 
Figure 5. The Pearson coefficient (R2) of the predicted GPFBR and the actual 
GPFBR, in which the blue line is the best fitting line. 

 
Although this study shows that the combination of CNN and remote sensing 

image has a high accuracy in regional poverty estimation, it is still necessary to 
further study the applicability of deep learning in different regional poverty es-
timation. 
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