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Abstract 
We present a unique approach for communication deadlock analysis for ac-
tor-model which has an under-approximated analysis result. Our analysis de-
tects narrowly defined communication deadlocks by finding a cyclic depen-
dency relation in a novel dependency graph called the slave dependency 
graph. The slave dependency graph is based on a new relationship between 
Actors, slave dependency, defined by us. After that, we implement this theory 
in Soot, an analysis tool for Java, and use it to analyze actor-based Java pro-
gram realized by Akka, a Java library that allows actor-based programming. 
We argue that our analysis can detect a specific kind of communication 
deadlock with the precise result, but has many limitations. 
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1. Introduction 

Deadlock detection in concurrency programs is a well-studied topic. Although 
most of those studies focus on the traditional thread-based concurrency model, 
some studies still have significant influences on us so that we decided to bring 
their ideas into our own study. Flores-Montoya et al. [1] present an analysis that 
finds deadlocks in concurrency programs through dependency graph construc-
tion as the deadlock situation occurs when the dependency graph contains a cir-
cle. A. von Mayrhauser et al. [2] have also used the approach of Con-
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trol-and-Communication Flow analysis to develop an algorithm that can detect 
communication deadlock in codes written in Ada, which is also a concurrency 
language. Their research, however, focuses on an algorithm that is capable of 
doing automated and efficient re-analysis after changes in the Ada code. J-L. 
Colaço et al. [3] present an analysis based on the type inference model for a pri-
mitive actor calculus to handle the situation of “orphan messages”, the messages 
received by actors while never being processed. This analysis is important in de-
tecting communication deadlock, since orphan message is one of the causes of 
communication deadlock. Maria Christakis and Konstantinos Sagonas [4] pro-
pose a static analysis that could detect both Communication deadlock and Beha-
vioral deadlock in the Erlang language. The analysis detects deadlocks by gene-
rating a control flow graph and finds whether the graph is a closed figure or not. 
If the graph is not closed, the whole program is considered to have a deadlock. 
This approach is by far one of the best approaches for detecting deadlocks, and it 
has demonstrated its feasibility by finding communication deadlocks in some 
open source libraries. 

According to the definitions of behavioral deadlock and livelock, there is a 
wide variety of causes of these kinds of deadlocks; hence, it is hard for re-
searchers to specify them and think of a general solution, resulting in little 
progress on analyzing these kinds of deadlocks. Therefore, the studies on 
communication deadlock are relatively more common, which make it easier for 
us to learn about and do some research on this topic. However, as we dive deep 
into the field of communication deadlock analysis for actor models, we find 
that there are a lot more theoretic studies than practical implementation of 
theories on finding communication deadlock. As a result, we develop a novel 
approach involving a “Slave Graph” (based on changes to an existing approach), 
for finding communication deadlock in an Actor System. After that, we imple-
ment our analysis theory and use an analysis tool, Soot, to look for communica-
tion deadlocks in a certain actor-based programming toolkit in Java, Akka, by 
checking the definition statements of specific actor classes inside the program 
being analyzed. 

In this paper, we will be focusing on creating and testing a novel approach in 
finding communication deadlocks. The first part of this paper is about the in-
troduction of the specific type of communication deadlock, “restricted commu-
nication deadlock” and the method of detecting it. In the rest of our paper, we 
put this method into actor-based-system tests, which we carefully projected, and 
evaluate it by discussing its advantages and disadvantages according to the test 
results.  

2. Definition and Background Information 

Actors are isolated concurrent entities that communicate through asynchronous 
messages and do not share state [5]. An actor responds to an incoming message 
by generating a finite set of communications sent to other actors, a new behavior 
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(which will govern the response to the next communication processed) and a fi-
nite set of new actors created [6]. The actor-based concurrency model is gener-
ally seen as an enhancement on the current thread-based concurrency model. 
Since actors can only interact with each other through the mean of message ex-
change, the states of each actor could only be subjected to mutation from itself, 
unlike how multiple thread can access the same process in the thread model. 
This means that the actor model is an effective solution to common problems in 
multi-thread program, such as data race conditions as well as deadlocks. How-
ever, thoughtless design of algorithms using the actor model is still possible to 
result in deadlocks [5]. 

Soot is a static program analysis framework developed by the Sable Research 
Group at McGill University. It processes Java code into a 3-address intermediate 
language called “Jimple”, which is suitable for static analysis. The modules in 
Soot support intraprocedural and interprocedural analysis, point-to analysis, 
def/use chain, and graph construction, but the users can also create their own 
analysis, like communication deadlock analysis in this research, based on the 
framework. Since Java by default does not support actor model concurrency, the 
programs we analyze in this research are Java codes written in Akka framework. 
Akka is an open-source toolkit developed by Lightbend that provide support for 
actor-model concurrency in both Java and Scala. 

A communication deadlock is a condition in a system where two or more ac-
tors are blocked forever waiting for each other to do something. This condition 
is similar to traditional deadlocks known from thread-based programs [5]. 
However, we have a more specific situation of communication deadlock to ana-
lyze and have to narrow its definition. In our research, restricted communication 
deadlock occurs when two or more actors don’t send messages that are required 
by another actor and only declared by themselves, so that the actor system 
reaches a state that each actor in the actor system is waiting for another actor to 
send its message. An example of PingPong is given in Figure 1.  

In Figure 1, Actor Ping and Pong both have the messages that are required by 
each other: Ping needs Pong_msg and Pong needs Ping_msg. However, neither 
of them will send those messages. Instead, they send “ok”. Hence, they reach a 
state of waiting for each other to send messages in line 2, which becomes a situa-
tion of restricted communication deadlock.  

3. Development of Analysis Theory  
3.1. Derivation from Dependency Graph 

As we read through papers about finding communication deadlocks, we found a 
simple way to spot deadlocks, which is from the work of Flores-Montoya’s team. 
They created a kind of state dependency graph GS and state the definition of 
deadlock as following: 

A program state S is deadlock if and only if when its dependency graph GS 
contains a cycle [6]. 
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Figure 1. Single example of restricted communication deadlock. 

 
However, we misunderstood the definition of “dependency graph GS”, and 

went straight into the wrong direction of looking for cycles in data dependency 
and control dependency graphs. In fact, GS is actually built upon nodes like ob-
jects and task identifiers and whose edges are defined between objects and tasks, 
which is dramatically different from our work based on data dependency and 
control dependency graph. 

At last, we found it couldn’t solve restricted communication deadlock and de-
cided to take its idea of finding cycles in a kind of dependency graph and built 
our own dependency graph. 

3.2. Slave Dependency Graph  
3.2.1. Semantics 
This section presents the semantics of actor-based language: 

An Actor System S is a set S = Actors where Actors is the set of all created 
Actors. 

An Actor is a term ( ), , ,A a M RT msg t  where a is the Actor identifier, M is 
the set of all messages created within the Actor, ,RT msg t  is the set of all 
pairs of the message received and the message sent consequently, in which msg 
means the message received by this Actor and t means the message sent back by 
this Actor in response to the message it receives. 

3.2.2. Definitions  
Slave Dependency Relationship:  
Given two Actors A1 and A2, we define their slave dependency relationship, A1 

is slave dependent on A2 as follows: 

( )1 1 1 1 1, , ,A a MSG RT msg t  

( )2 2 2 2 2, , ,A a MSG RT msg t  

[ ] [ ] [ ] [ ]1 2 2 1 2 2 1

1 2

, , ,x RT x msg MSG y RT y msg MSG z RT y t RT z msg
A A

∃ ⋅ ∈ ∧∃ ⋅ ∈ ∧∀ ⋅ ≠ ⋅

→
 

This type of relation corresponds to the situation when A1 wants A2 message 
and sends itself’s message to A2 whereas A2 receives the message from A1 and 
doesn’t send back its message. 

Specifically speaking, this definition of slave dependency relationship has 
three premises: [ ]1 2,x RT x msg MSG∃ ⋅ ∈ , [ ]2 1,y RT y msg MSG∃ ⋅ ∈  and 

[ ] [ ]2 2 1,z RT y t RT z msg∀ ⋅ ≠ ⋅ . I will explain each of them explicitly. The first pre-
mise is [ ]1 2,x RT x msg MSG∃ ⋅ ∈ , which means there exists a message possessed 
by A1 and required by A2. The second premise is [ ]2 1,y RT y msg MSG∃ ⋅ ∈ , simi-
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lar to the previous one, which means there exists a message possessed by A2 and 
required by A1. The third premise is [ ] [ ]2 2 1,z RT y t RT z msg∀ ⋅ ≠ ⋅ , which means 
that when A2 receives the required message from A1, it doesn’t send back any 
message required by A1. In this situation, the slave dependency that A1 is 
“slave-dependent” on A2 establishes.  

Slave Dependency Graph: 
Given an Actor System S = Actors, we define its slave dependency graph GS 

whose nodes are the existing Actors and whose edges are slave dependency rela-
tionship defined above. 

Restricted Communication deadlock: 
An Actor System S has a restricted communication deadlock iff its slave de-

pendency graph contains a cycle. 
Singhal [7] defines that a resource deadlock is a set of processes in a state 

where each process in the set requests a resource held by another process in the 
set and a communication deadlock is in a similar situation whereas each process 
requires and waits for messages instead of resources. It is a situation alike in re-
stricted communication deadlock in an Actor System, where each 
slave-dependent Aactor awaits the message to be sent by the owner in a slave 
dependent relationship. Therefore, to achieve the state where every actor is re-
stricted-communication-deadlocked, each of the Actors in the system needs to 
be slave dependent on anther, which consequently leads to a circle in slave de-
pendency graph. 

An example could be PingPong mentioned in the background information, in 
which PingPong can be expressed as follows: 

{ } { }( ), _ , _ ,PingA Ping Ping msg Pong msg ok“ ”  

{ } { }( ), _ , _ ,PongA Pong Pong msg Ping msg ok“ ”  

Hence,  

msg msg msg msg msg

Ping Pong

Pong Pong Ping Ping ok Pong
A A

= ∧ = ∧ ≠

→

“ ”
 

msg msg msg msg msg

Pong Ping

Ping Ping Pong Pong ok Ping
A A

= ∧ = ∧ ≠

→

“ ”
 

3.3. Slave Chain 

After we generate a slave dependency graph for the actor model program, 
another algorithm will verify if the slave dependency graph has a cycle. Since the 
dependency graph is a collection of pairs of Actors in slave dependent relation-
ship and we want to find a cycle in the graph, we merge these pairs into a chain 
called “Slave chain”. Here, we consider these pairs as a short chain of two Actors. 
We merge the Slave Chain with the next short chain iff the tail of the Slave 
Chain equals the head of the next one. After all the possible merges are finished, 
we look at the final product of Slave Chain. If the head of the Slave Chain equals 
its tail, which means the Actors in the chain are in a cyclic slave dependency re-
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lationship, we consider that the Actors in this chain are in a restricted commu-
nication deadlock. 

For example in slave dependency graph GS:  
A B B C C A→ → →  

GS contains a restricted communication deadlock. As B is the tail of the first 
pair as well as the head of the second pair, we merge them into a Slave Chain:  

A B C C A→ → →  

We then merge the slave chain and the next pair for the same reason:  

A B C A→ → →  

Since the final Slave Chain A B C A→ → →  has its head and tail the same 
Actor A, and according to the theory above, the Actors in the chain, , ,A B C , 
are in the state of restricted communication deadlock. 

Continue, using the example of PingPong, as we have determined their slave 
dependency relationship: ,Ping Pong Pong PingA A A A→ → , we find that the Actor at 
the tail of the first chain is also at the head of the second one. We then merge 
them together into Ping Pong PingA A A→ → . Since the head is also the tail in this 
chain, we conclude that the Actors PingA  and PongA  are in restricted commu-
nication deadlock.  

4. Implementation of the Analysis Theory  
4.1. Pseudocode of Analysis Program  

Illustrated by Algorithm 1, internal Transform() is automatically executed by 
Soot, extracting statements within a class. In our implementation, we turn Soot 
to whole-program mode, so that Soot can exact statements from every class of 
Actors. 

1) In line 1, we transform every line of code being analyzed into a statement 
by using Soot. We then store them in a list for further analysis.  

2) In line 2, Statement Sequence is a set of consecutive statements in a pro-
gram.  

3) In line 3, we use the pattern we found from the source code of .match() 
function. As long as Statement Sequence match this pattern, we can determine 
Actor’s name and the receiving and sending of an actor, where the Actor’s name 
is after @this, the sending message is after @parameter0 and receive message is 
after new. 
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For example, the output of Soot shows the source code of Actor Celcius:  

 
4) In line 4, we add the receiving message and sending message pair to Recv-

SendMapping, which is a list of pairs describing how the Actor will react to the 
incoming message. ActorGraph is a data structure generally describing the cha-
racteristic of an Actor, which is a class contains Actor’s’ name and RecvSend-
Mapping.  

5) In line 6, we also found a pattern to make sure we can find all of the receiv-
ing messages whether it sends the correct message or not. Here the predication 
means the Actor doesn’t send the right message.  

6) In line 7, we do the similar thing in line 4, whereas we add null to its send 
message.  

Illustrated by Algorithm 2, findDependency() is the method that search 
among slave dependency graph and reports restricted communication deadlocks. 
It is executed only once.  

1) In line 1, we find all of the Actors by finding keyword new and Abstrac-
tActor, and store them into corresponding created ActorGraph. graphList is a 
list of all ActorGraph in the Actor System.  

2) In line 2, we store RecvSendMapping in corresponding ActorGraph.  
3) In lines 3-11, we check if the two Actors are in slave dependent relationship 

and add them to slaveDependency in a pair. slaveDependency is a list of pairs 
in which the key of the pair is the slave Actor and the value is the master Actor.  

4) In line 13, we create a list interval to store the Actors being merged.  
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5) In line 15, we add the interval Actor to interval.  
6) In line 16 we add the merged slave chain to slaveChains. slaveChains is a 

collection of pairs describing a series of Actors that are in slave dependency rela-
tionship.  

7) In line 19-23, if we eventually get a Pair in slaveChians that has Pair(a,a), 
which means a circle in our slave dependency graph, the program will report an 
error by showing all the Actors in this chain are in the state of restricted com-
munication deadlock.  

4.2. Restrictions 

For the above analysis to be employed in an actor model program, the program 
must satisfy two restrictions: 

Restriction 1: 
The message must be sent by the Actor that it is belonged to. Although in 

Akka, messages can technically be sent by Actors that does not own that partic-
ular message. However, since we couldn’t find the right code showing the re-
ceiving message is sent by which Actor, we have to restrict the message being 
sent. If a message can only be sent by one Actor, it is much easier for us to trace 
back where the message is from. 

Restriction 2: 
In each method match() of an Actor class, there is only one tell() function, 

whose caller of must be sender(). If there are multiple tell functions, no matter 
who the receiver is, we shall assume an Actor with two sender.tell(a). If the 
sender can reply to a, and the message it sent can also be replied by the first Ac-
tor, then it will do the two sender.tell(a) twice, because it received the same 
message twice. Thus, the Actor’s reply of the sender would increase exponen-
tially with a base of two in this simplest base case. It would soon cause the entire 
program to go into a chaos either because of an infinite loop or recursion. It 
would be meaningless to write such codes in an Actor. Secondly, if we assume an 
Actor has a tell method with a caller “A”, where A can react to the kind of mes-
sage the Actor sent—it still can’t imply that the message the Actor sent is strictly 
owned by itself. If we cannot identify it, we will not be sure whether the Actor A 
is dependent on the first Actor or the actual owner of the message or actually. 
Hence, it is also a meaningless piece of code.  

4.3. Test Cases  

Test Case 1:  
 

 
Figure 2. Pseudocode of test case 1. 
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Figure 3. Slave dependency graph of test case 1. 

 
Test Case 2:  

 

 
Figure 4. Pseudocode of test case 2.  

 

 
Figure 5. Slave dependency graph of test case 2. 

 
Test Case 3:  

 

 
Figure 6. Pseudocode of test case 3.  
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Figure 7. Slave dependency graph of test case 3. 

Test Case 4:  
 

 
Figure 8. Pseudocode of test case 4.  

 

 
Figure 9. Slave dependency graph of test case 4. 

 
Test Case 5: 

 

 
Figure 10. Pseudocode of test case 5.  
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Figure 11. Slave dependency graph of test case 5. 

 
The above Figure 2, Figure 4, Figure 6, Figure 8, Figure 10 illustrate the test 

cases which are used to test our implemented program, shown by Algorithm 1, 
Algorithm 2. Figure 3, Figure 5, Figure 7, Figure 9, Figure 11 depict the slave 
dependent relationship within the test cases for better understanding. We per-
form the analysis of the test cases each for 20 trails to test the stability of our test 
program’s performance and get the following table. From Table 1, we find that 
the accuracy of finding errors decreases as the number of Actors increases in the 
Actor System.  

5. Related Work and Conclusions 

Among all the related works, Flores-Montoya et al. [1] present an analysis that 
finds deadlocks in concurrency programs through dependency graph construc-
tion, and the deadlock situation occurs when the dependency graph contains a 
circle. Although our analysis also looks for deadlocks by finding a cyclic relation 
in a graph, we use a different graph, Slave Dependency Graph. On the other 
hand, the work of Flores Montoya et al. pays more attention to the thread-based 
concurrency programs. For A. von Mayrhauser et al. [2], their research, however, 
focuses on an algorithm that is capable of doing automated and efficient 
re-analysis after changes in the Ada code. Although this kind of algorithm is ex-
tremely useful in the setting of project maintenance, its focus on changes in the 
existing code and their impact is significantly different from our goal of detect-
ing communication deadlock in the scope of the entire project. Although J-L. 
Colaço et al.’s work [3] directly relates to communication deadlock detection in 
actor model programs, their static detection algorithm in the paper could not 
detect all of the possible orphan messages, and the assist of dynamic detection 
still requires the locations of the remaining orphan messages. Maria Christakis 
and Konstantinos Sagonas’ work [4] is by far one of the best approaches for de-
tecting deadlocks, and it has demonstrated its feasibility by finding communica-
tion deadlocks in some open source libraries. However, the approach we use is a 
more unique one. 

We develop a novel dependency graph, slave dependency graph, in which we 
can find restricted communication deadlocks of an actor-based program, and 
demonstrate the algorithm’s feasibility by the implementation of building an 
analysis program. The analysis program can detect a specific kind of restricted 
communication deadlock in an actor-based Java program with Akka toolkit. 
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Table 1. Test results of 20 trails of the 5 test cases. 

 No Error Report Partial Errors Report All Errors Report 

Test Case 1 0% 0% 100% 

Test Case 2 10% 15% 75% 

Test Case 3 10% 10% 80% 

Test Case 4 15% 20% 65% 

Test Case 5 5% 15% 80% 

 
There are two limitations in our research. The first one is about the imperfect 

precision of our analysis program. According to Table 1, we can see as the 
number of Actors in an Actor System increases, the percentage of failing report 
increases notably. This is due to the internalTransform() method provided by 
Soot, which extracts the key information of an Actor from the Java source code. 
It seems this method is run in multi-threaded for analyzing all actor classes, 
which may cause the pattern we found fails to construct ActorGraph with right 
information. Thus, the analysis program cannot report all the restricted com-
munication deadlocks correctly from time to time. According to the test result, 
we believe the percentage of failing report would increase significantly, and we 
would have a smaller possibility to identify all the restricted communication 
deadlocks in a huge Actor System. Therefore, our analysis program is more 
suitable for small Actor System. The second limitation is due to our narrow de-
finition of restricted communication deadlock. Since we have such a strict defi-
nition for restricted communication deadlock, the slave dependency relationship 
ignores situations. For example, an Actor receives a message and sends its mes-
sage to another Actor. This restriction of definition makes our program only 
able to perform a limit under-approximation analysis of communication dead-
lock in an Actor System.  
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