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Abstract 
Fraud is a major challenge facing telecommunication industry. A huge 
amount of revenues are lost to these fraudsters who have developed different 
techniques and strategies to defraud the service providers. For any service 
provider to remain in the industry, the expected loss from the activities of 
these fraudsters should be highly minimized if not eliminated completely. But 
due to the nature of huge data and millions of subscribers involved, it be-
comes very difficult to detect this group of people. For this purpose, there is a 
need for optimal classifier and predictive probability model that can capture 
both the present and past history of the subscribers and classify them accor-
dingly. In this paper, we have developed some predictive models and an op-
timal classifier. We simulated a sample of eighty (80) subscribers: their num-
ber of calls and the duration of the calls and categorized it into four 
sub-samples with sample size of twenty (20) each. We obtained the prior and 
posterior probabilities of the groups. We group these posterior probability 
distributions into two sample multivariate data with two variates each. We 
develop linear classifier that discriminates between the genuine subscribers 
and fraudulent subscribers. The optimal classifier ( A Bβ + ) has a posterior 
probability of 0.7368, and we classify the subscribers based on this optimal 
point. This paper focused on domestic subscribers and the parameters of in-
terest were the number of calls per hour and the duration of the calls. 
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1. Introduction 
Communication industry has made the world a global village, and among all 
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components of the industry, telecommunication is the most popular and most 
widely used [1]. It has created employment opportunities and empowered 
people economically and has removed distance, thereby saving lives and cost. 
Telecommunication has created opportunities for both the service providers and 
subscribers to do their separate but related businesses and earn their livings. But 
all these blessings do not come without some serious consequences of fraud in 
the business. Our interest in this paper is to detect fraud in the industry using 
the frequency and the duration of their calls. Fraud detection in telecommunica-
tion industry is vital to the survival of the industry. It is a common knowledge 
that fraudsters have flooded the telecommunication industries in various ways 
ranging from illegal access to bandwidth, attack on cyber securities, access to 
pocket of data, and illegal calls. All these constitute a huge loss to the telecom-
munication industries. These illegalities may force some of the service providers 
out of the industry if not properly checked. The multiplier effects of these frau-
dulent activities are massive loss of jobs, decline in the standard of living and its 
attendant consequences on those directly involved and others not directly in-
volved. The most difficult aspect of these fraudsters is that they are smart and 
can hack into the data base of these service providers who should not sit back 
and watch them destroy their businesses. Since fraud is not localized, and does 
not have a permanent “office”, it can be committed at anywhere and at any time. 
Telecommunication operators store large amounts of data related to the activi-
ties of their subscribers. In these records, there exist both normal and fraudulent 
records. It is expected for the fraudulent activity records to be substantially 
smaller than the normal activity. If it were the other way around this type of 
business would be impractical due to the amount of revenue lost [1]. 

This sector broadly has two types of users—domestic and commercial. There 
are cases where the connections are bought under domestic categories but the 
use is on a commercial scale. This causes substantial loss to the sector [2]. There 
is a need to adopt a data mining technique that will filter these fraudsters. Data 
volume has been growing at a tremendous pace due to advancements in infor-
mation technology. At the same time there has been enormous development in 
data mining. Data mining can be defined as the process of extracting valuable 
information from data [3]. The telecommunication sector acquires huge amount 
of data due to rapidly renewable technologies, the increase in the number of 
subscribers and with value added services. Uncontrolled and very fast expansion 
of this field cause increasing losses depending on fraud and technical difficulties 
[4]. 

Today, telecommunication market all over the world is facing a severe loss of 
revenue due to fraudsters [5]. To overcome such business hazards and to retain 
the market, operators are forced to look for alternative ways of using data min-
ing techniques and statistical tools to identify the cause in advance and to take 
immediate actions in response. This can be possible if the past history of the 
subscribers were analyzed systematically. Fortunately, telecom industries gener-
ate and maintain a large volume of data such as Call detail data and Network 
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data [6]. One reason for the non-utilization of this potential is the insufficient 
knowledge of the algorithms to be used on such data. Data mining tools and al-
gorithms can be used to exploit the potential in the data when the data is synthe-
sized efficiently. The advent of data mining algorithms and the development of 
software and hardware have led to an ease in analyzing huge and complex data 
[7]. Globally, the development of telecommunications industry is rapidly in-
creasing with one innovation replacing another in a matter of years, months, and 
even weeks. Without doubt telecommunication is a key driver of any nation’s 
economy. Telecommunication is the communication of information by elec-
tronic means usually over some distance. It involves the transmission and re-
ceipt of information, messages, graphics, images, voice, video and data between 
or among telephones, internet, satellites and radio [8]. 

In this area, some researchers have used different methods to determine both 
customer churn and fraud detection. Fraud detection and subscribers churn are 
related in the sense that both are concerned with subscriber’s behavior. Among 
the models used for data mining for both churn and fraud detection are naïve 
Bayes model; Gaussian probability distribution; Decision Tree algorithm; logistic 
regression and artificial neural network (ANN). Data mining is the extraction of 
vital information from the bulk of data available to the telecommunication in-
dustry and using an appropriate predictive model to classify and determine the 
behavior of subscribers. By refining the data and building an appropriate statis-
tical model, so much hidden information about the subscribers and service pro-
viders will be unveiled, see [9] [10] [11] [12]. This information is very vital to the 
survival of any service provider such as MTN, GLO, ETISALAT, MTEL, etc., in 
the business of telecommunication, especially in Nigeria. We shall use the sub-
scribers’ frequency of calls and the duration of such calls as parameters of inter-
est in this paper. Then, we shall determine the prior and posterior probabilities 
of the subscribers and their number of calls at a given time. We shall develop a 
linear discriminant function which will be used to classify the posterior proba-
bility distribution into fraud and genuine subscribers. In this paper, we are con-
cerned with statistical modeling and not machine learning or artificial intelli-
gence method of classification. 

Because of the privacy agreement between the service providers and subscrib-
ers on one hand and to protect the service providers’ respective businesses on 
the other hand, the service providers hardly disclose their data. But nevertheless, 
simulation offers a close substitute for real life data. Hence, in this paper, we si-
mulate data that depict the real life scenario and use it for the study. We simulate 
data on number of calls per unit time, and the call duration and our interest is 
on the domestic subscribers only. Eighty (80) sample data points were simulated 
for the study. The samples were categorized into four (4) with each having 
twenty (20) observations representing subscribers. The number of calls per sub-
scriber over a period of time was also simulated and these represent real life data 
and are used for this study. The sample data generated from such process look 
like real life data drawn from a real system. We employed MINITAB 16.0 for the 
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simulation of the data in this work. A sample of 20 observations each on the av-
erage number of calls and rate given as follows; 8 (t = 3), 5 (t = 4), 9 (t = 12), 6 (t 
= 7), were simulated for the study. The values such as 8, 5,∙∙∙, 7 outside the 
bracket represent the average number of calls per hour, and the values in bracket 
represent the average duration of the entire calls in minutes. Our interest is to 
develop a predictive data mining model for fraud detection in telecommunica-
tion industry. The simulated data were categorized into two sample multivariate 
data groups A and B. Most importantly, service providers determine their cus-
tomers’ behaviour from the nature of their current calls and their past beha-
viour. 

2. Methodology 

We need to know the history of these subscribers based on the information 
available to the network providers (service providers). This information is basi-
cally obtained from their call history. For this reason, the appropriate probability 
model that has a memory and can capture such a past history and relate it to the 
current history of subscribers’ is the Bayesian statistic model. However Bayesian 
statistics requires a prior probability. Some researchers make mistake of esti-
mating the prior probability in this type of study using a continuous distribution 
as though the number of calls belong to a continuous random variable. Actually, 
the number of calls is a Poisson problem and therefore belongs to a discrete 
probability distribution. The value of Poisson random variables are the 
non-negative integers, and any random phenomenon for which a count is of in-
terest can be modeled by assuming a Poisson distribution, provided that the 
random variables satisfies certain assumptions regarding the distribution [13]. 
Example of such a count includes the number of telephone calls per unit time 
coming into the switch board of a large business. Hence, we shall estimate the 
prior probabilities using Poisson distribution. Since each subscriber’s number of 
calls and time involved have non-stationery increment, we assume a 
non-homogenous Poisson process (NHPP) with parameter ( )tω , where, ω  is 
the call rate and t is the time duration for the calls. This has been tested and the 
shape parameter b was found to be greater than zero. The intensity function of 
power law process model ( ( ) 1bt abtω −= ) can be used to describe the intensity of 
a NHPP. The power law process model has the mean and intensity function as 

( ) bt atΛ =  and ( ) ( ) 1d
d

bt
t abt

t
ω −Λ

= =              (1) 

The parameters of the model are obtained by log linear transformation of the 
mean value function. 

( )ln ln lnt a b tΛ = +                      (2) 

and a plot of ln ( )tΛ  against ln(t) will yield the value of ln(a) as the intercept 
and b as the slope of the linear graph. If the shape parameter b = 1, there is a sta-
tionary increment and we have HPP(ω ) but for b > 1, we have NHPP(ω t) [14]. 
Hence, the predictive probability model for the priors is: 
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( ) { } { }1 1exp !;      0,1,
nb b

nP t abt abt n n− − = − =  
       (3) 

[15], where Pn(t) = the probability of n number of calls at a given time (t) and 
the other notations retain their usual meaning as defined before. 

The following assumptions must be satisfied by the random variables before 
we can use Equation (3) above: 

Model Assumption: 
The stochastic process ( ){ }, 0N t t ≥  is called a non-homogeneous Poisson 

Process with rate function ( ){ }, 0t tω ≥  if 
1) ( )0 0N = : (The number of events at time zero is equal to zero). 
2) ( ){ }, 0N t t ≥  has independent increment: (The number of events in 

non-overlapping time interval are independent). 

3) 
( )

0
lim 0
h

o h
h→

= : (o(h)—some function of smaller order than h which satisfy 

the limit). 
4) ( ) ( ){ } ( ) ( )1 0P N t h k N t k t h hλ+ = + = = ⋅ + : (The probability that ex-

actly one event will occur in a small interval of length t + h approximately equal 
to ( ) ( )0t h hλ ⋅ + ). 

5) ( ) ( ){ } ( ) ( )1 0P N t h k N t k t h hλ+ = = = − ⋅ + : (The probability that no 
event occur in a small interval of length t + h). 

6) ( ) ( ){ } ( );   2P N t h k j N t k o h j+ = + = = ≥ : (The probability that more 
than one event will occur in a small interval of length t + h). 

7) The events must occur at random [16]. 
Bayesian statistics model is adapted for the posterior distribution since it has 

the attribute of capturing the prior behaviour of these subscribers to determine 
their current behaviour. Hence, the predictive statistical model for this study is 

( ) ( ) ( )

( ) ( )
0

n

P P
P

P P
ω

ζ ω ω
ψ ζ ω

ζ ω ω
=

= =

∑
               (4) 

where ( )P ψ ζ ω=  = the conditional probability that the random variable ψ  
assumes a specific value ζ  given that its prior probability was ω . Note that 
ω  is now a random variable. ( ) ( )

0

n
P P

ω
ζ ω ω

=
∑  = the joint probability distri-

bution of the subscribers [17]. 
Our interest is to classify the subscribers as either genuine or fraudulent. 

Hence, this is a classification problem and linear discriminant analysis will be 
employed to classify the subscribers where they belong. This classification will 
enable service providers to determine the measures to take against these fraud-
sters. The discriminant analysis will discriminate between the legitimate sub-
scribers and fraudulent ones within the network. The idea of discriminant analy-
sis is a search for the differences in two or more groups that consist of multiva-
riate measurements. One (or more) linear function(s) which maximally differen-
tiate(s) between these groups are constructed. These functions are then used to 
classify new member of similar group into the appropriate group they belong 
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and differentiate them from the group they do not belong to [18]. The linear 
discriminant function employ is given in Equation (5). 

( ) ( )( )1 21TX Sβ µ µ−= −                         (5) 

where ( )T
1 , pX X X=  ; 1S −  is the inverse of the dispersion (va-

riance-covariance) matrix and ( ) ( )1 2µ µ−  is the difference in the mean vectors 
between the two multivariate samples and β  is the linear discriminant func-
tion. We established the optimal classifier of the discriminant function and fi-
nally classify the sample data accordingly based on their posterior probability 
distributions. Two multivariate sample data with two variates will be derived 
from Equation (4). The two sample multivariate data with two variates each are 
the posterior probabilities of each group. Then, we shall classify the samples as 
belonging to either genuine or fraudulent subscribers based on the optimal clas-
sifier ( A Bβ + ). Our classification rule will be: classify the subscribers in group A 
into “A1; A2”, where A1 is the fraudulent subscribers and A2 is the genuine sub-
scribers. Similarly, we do the same for group B designated by “B1; B2”. Fraud 
subscribers tend to make use of the services much more than the genuine sub-
scribers and should therefore have higher probability distributions.  

Definitions: 
Subsc = subscribers. 
n-call = the number of calls per subscriber per hour. 
t (min) = the time spent on the calls. 
Prop.n (n/N) = fraction of the number of calls in relation to the total number 

of calls. 
Pr.of Prio = the probability of priors. 
joint prb = the joint probabilities. 
Posterior = the posterior probabilities. 
Churn = the defection of subscribers from one network to another. 

3. Analysis 

The average number of calls and time spent in each call are presented in Table 1. 
A plot of ln(t) against ln( tω ) is presented in Figure 1. 
From Figure 1, we found that the slope, b = 1. And from the relationship in 

Equation (2) and Figure 1, we have that ln(a) = 2.2. Hence,  
( )exp 2.2 9.0250a = =  

The implication of the shape parameter being 1 indicate that the intensity 
function has stationery increment, through the PLP transformation; hence, this 
distribution follows HPP(ω) and the prior probability distribution of Equation 
(3) becomes 

( ) { } { }exp 9.0250 9.0250 !n
nP t n = −              (6) 

Equation (6) is presented in Table 2 by the column labeled “Prob” and Equa-
tion (4) is presented in Table 2 by the column labeled “Poste.Pr”. 
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Table 1. Average number of calls (ω ) and average time spent (t) ( 8;  3tω = = ). 

Subsc n-call t(min) tω  ln(t) ln( tω ) 

1 11 6 48 1.791759 3.871201 

2 9 2 16 0.693147 2.772589 

3 10 1 8 0 2.079442 

4 11 1 8 0 2.079442 

5 11 3 24 1.098612 3.178054 

6 5 3 24 1.098612 3.178054 

7 5 1 8 0 2.079442 

8 7 3 24 1.098612 3.178054 

9 11 2 16 0.693147 2.772589 

10 6 4 32 1.386294 3.465736 

11 9 2 16 0.693147 2.772589 

12 8 1 8 0 2.079442 

13 11 4 32 1.386294 3.465736 

14 9 1 8 0 2.079442 

15 8 2 16 0.693147 2.772589 

16 8 2 16 0.693147 2.772589 

17 10 4 32 1.386294 3.465736 

18 8 1 8 0 2.079442 

19 9 1 8 0 2.079442 

20 7 4 32 1.386294 3.465736 

 
Table 2. No. of calls (hr), Pn(t), Joint Prob. prior and posterior probabilities. 

n-call (a) Exp(-a) a^n Prob. Prop. N Prior Pr. Joint pr. Poste. Pr 

11 9.025 0.00012 3.24E+10 0.097556 0.063584 0.006203 0.112189 0.055291 

9 9.025 0.00012 3.97E+08 0.131354 0.052023 0.006833 0.112189 0.06091 

10 9.025 0.00012 3.58E+09 0.118547 0.057803 0.006852 0.112189 0.061079 

11 9.025 0.00012 3.24E+10 0.097262 0.063584 0.006184 0.112189 0.055124 

11 9.025 0.00012 3.24E+10 0.097262 0.063584 0.006184 0.112189 0.055124 

5 9.025 0.00012 59873.69 0.059874 0.028902 0.00173 0.112189 0.015424 

5 9.025 0.00012 59873.69 0.059874 0.028902 0.00173 0.112189 0.015424 

7 9.025 0.00012 4876750 0.116113 0.040462 0.004698 0.112189 0.041878 

11 9.025 0.00012 3.24E+10 0.097262 0.063584 0.006184 0.112189 0.055124 

6 9.025 0.00012 540360.1 0.09006 0.034682 0.003123 0.112189 0.027841 

9 9.025 0.00012 3.97E+08 0.131354 0.052023 0.006833 0.112189 0.06091 

8 9.025 0.00012 44012667 0.13099 0.046243 0.006057 0.112189 0.053992 

11 9.025 0.00012 3.24E+10 0.097262 0.063584 0.006184 0.112189 0.055124 

9 9.025 0.00012 3.97E+08 0.131354 0.052023 0.006833 0.112189 0.06091 

8 9.025 0.00012 44012667 0.13099 0.046243 0.006057 0.112189 0.053992 

8 9.025 0.00012 44012667 0.13099 0.046243 0.006057 0.112189 0.053992 

10 9.025 0.00012 3.58E+09 0.118547 0.057803 0.006852 0.112189 0.061079 

8 9.025 0.00012 44012667 0.13099 0.046243 0.006057 0.112189 0.053992 

9 9.025 0.00012 3.97E+08 0.131354 0.052023 0.006833 0.112189 0.06091 

7 9.025 0.00012 4,876,750 0.116113 0.040462 0.004698 0.112189 0.041878 

https://doi.org/10.4236/ojop.2019.81002


H. O. Amuji et al. 
 

 

DOI: 10.4236/ojop.2019.81002 22 Open Journal of Optimization 
 

 
Figure 1. Graph of ln(t) against ln( tω ). 

 
Table 2 presents the number of calls per hour, the probability distribution, the 

joint probability distribution, the prior and posterior probability distributions. 
The average number of calls and time spent in each call are presented in Table 

3. 
A plot of ln(t) against ln( tω ) is presented in Figure 2. 
From Figure 2, we determine the slope, b = 1. From the relationship in Equa-

tion (2) and Figure 2, we have that ln(a) = 1.7. Hence, ( )exp 1.7 5.4739a = = . 
The prior probability distribution in Equation (3) becomes 

( ) { } { }exp 5.4739 5.4739 !n
nP t n = −                   (7) 

Equation (7) is presented in Table 4 by the column labeled “Prob” and Equa-
tion (4) is presented in Table 4 by the column labeled “Poste.Pr”. 

Table 4 presents the number of calls per hour, the probability distribution, the 
joint probability distribution, the prior and posterior probability distributions. 

The average number of calls and time spent in each call are presented in Table 
5. 

A plot of ln(t) against ln( tω ) is presented in Figure 3. 
From Figure 3, we determine the slope, b = 1. From the relationship in Equa-

tion (2) and Figure 3, we have that ln(a) = 2.1. Hence, ( )exp 2.1 8.1662a = =  
The prior probability distribution in Equation (3) becomes 

( ) { } { }exp 8.1662 8.1662 !n
nP t n = −                   (8) 

Equation (8) is presented in Table 6 by the column labeled “Prob” and equa-
tion (4) is presented in Table 6 by the column labeled “Poste.Pr”. 

Table 6 presents the number of calls per hour, the probability distribution, the 
joint probability distribution, the prior and posterior probability distribu-
tions. 
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Figure 2. Graph of ln(t) against ln( tω ). 

 

 
Figure 3. Graph of ln(t) against ln( tω ). 

 
The average number of calls and time spent in each call are presented in Table 

7. 
A plot of ln(t) against ln( tω ) is presented in Figure 4. 
From Figure 4, we determine the slope, b = 1. From the relationship in Equa-

tion (2) and Figure 4, we have that Ln(a) = 1.58. Hence, ( )exp 1.58 4.8550a = =  
The prior probability distribution in Equation (3) becomes 

( ) { } { }exp 4.8550 4.8550 !n
nP t n = −                   (9) 

Equation (9) is presented in Table 8 by the column labeled “Prob” and Equa-
tion (4) is presented in Table 8 by the column labeled “Poste.Pr”. 

Table 8 presents the number of calls per hour, the probability distribution, the 
joint probability distribution, the prior and posterior probability distributions. 

Table 9 presents the posterior probability distributions for the two multiva-
riate groups A and B. 
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Table 3. n-call, t(min) ln(t) and ln( tω ) for 5;  4tω = = . 

Subsc n-call t(min) tω  ln(t) ln( tω ) 

1 8 5 25 1.609438 3.218876 

2 6 5 25 1.609438 3.218876 

3 9 3 15 1.098612 2.70805 

4 7 1 5 0 1.609438 

5 9 5 25 1.609438 3.218876 

6 7 2 10 0.693147 2.302585 

7 7 3 15 1.098612 2.70805 

8 4 1 5 0 1.609438 

9 7 3 15 1.098612 2.70805 

10 5 5 25 1.609438 3.218876 

11 5 6 30 1.791759 3.401197 

12 7 1 5 0 1.609438 

13 6 4 20 1.386294 2.995732 

14 7 2 10 0.693147 2.302585 

15 3 4 20 1.386294 2.995732 

16 4 4 20 1.386294 2.995732 

17 6 2 10 0.693147 2.302585 

18 4 3 15 1.098612 2.70805 

19 5 5 25 1.609438 3.218876 

20 1 5 25 1.609438 3.218876 

 
Table 4. No. of calls (hr), Pn(t), Joint Prob. prior and posterior probabilities. 

n-call (a) Exp(−a) a^n Prob. Prop. N Prior Pr. Joint pr. Poste. Pr 

8 5.4739 0.004195 806,073.9 0.083863 0.068376 0.005734 0.122948 0.046639 

6 5.4739 0.004195 26,901.79 0.156734 0.051282 0.008038 0.122948 0.065374 

9 5.4739 0.004195 4,412,368 0.051006 0.076923 0.003924 0.122948 0.031912 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

9 5.4739 0.004195 4,412,368 0.051006 0.076923 0.003924 0.122948 0.031912 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

4 5.4739 0.004195 897.8162 0.156925 0.034188 0.005365 0.122948 0.043636 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

5 5.4739 0.004195 4914.556 0.171798 0.042735 0.007342 0.122948 0.059715 

5 5.4739 0.004195 4914.556 0.171798 0.042735 0.007342 0.122948 0.059715 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

6 5.4739 0.004195 26,901.79 0.156734 0.051282 0.008038 0.122948 0.065374 

7 5.4739 0.004195 147,257.7 0.122564 0.059829 0.007333 0.122948 0.059642 

3 5.4739 0.004195 164.0176 0.114671 0.025641 0.00294 0.122948 0.023915 

4 5.4739 0.004195 897.8162 0.156925 0.034188 0.005365 0.122948 0.043636 

6 5.4739 0.004195 26,901.79 0.156734 0.051282 0.008038 0.122948 0.065374 

4 5.4739 0.004195 897.8162 0.156925 0.034188 0.005365 0.122948 0.043636 

5 5.4739 0.004195 4914.556 0.171798 0.042735 0.007342 0.122948 0.059715 

1 5.4739 0.004195 5.4739 0.022962 0.008547 0.000196 0.122948 0.001596 
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Table 5. n-call, t(min) ln(t) and ln( tω ) for 9;  12tω = = . 

Subsc n-call t(min) tω  ln(t) ln( tω ) 

1 11 14 126 2.639057 4.836282 

2 11 15 135 2.70805 4.905275 

3 12 10 90 2.302585 4.49981 

4 13 10 90 2.302585 4.49981 

5 8 7 63 1.94591 4.143135 

6 12 9 81 2.197225 4.394449 

7 12 15 135 2.70805 4.905275 

8 10 5 45 1.609438 3.806662 

9 3 11 99 2.397895 4.59512 

10 4 14 126 2.639057 4.836282 

11 14 17 153 2.833213 5.030438 

12 12 16 144 2.772589 4.969813 

13 6 4 36 1.386294 3.583519 
14 14 6 54 1.791759 3.988984 
15 8 12 108 2.484907 4.682131 

16 9 12 108 2.484907 4.682131 

17 5 16 144 2.772589 4.969813 

18 12 7 63 1.94591 4.143135 

19 14 9 81 2.197225 4.394449 

20 8 16 144 2.772589 4.969813 

 
Table 6. No. of calls (hr), Pn(t), Joint Prob. prior and posterior probabilities. 

n-call (a) Exp(−a) a^n Prob. Prop. N Prior Pr. Joint pr. Poste. Pr 

11 8.1662 0.000284 1.08E+10 0.076653 0.055556 0.004258 0.065554 0.064962 

11 8.1662 0.000284 1.08E+10 0.076653 0.055556 0.004258 0.065554 0.064962 

12 8.1662 0.000284 8.80E+10 0.052164 0.060606 0.003161 0.065554 0.048226 

13 8.1662 0.000284 7.18E+11 0.032768 0.065657 0.002151 0.065554 0.032819 

8 8.1662 0.000284 19776986 0.139349 0.040404 0.00563 0.065554 0.085887 

12 8.1662 0.000284 8.80E+10 0.052164 0.060606 0.003161 0.065554 0.048226 

12 8.1662 0.000284 8.80E+10 0.052164 0.060606 0.003161 0.065554 0.048226 

10 8.1662 0.000284 1.32E+09 0.103253 0.050505 0.005215 0.065554 0.079549 

3 8.1662 0.000284 544.5779 0.025785 0.015152 0.000391 0.065554 0.00596 

4 8.1662 0.000284 4447.132 0.052642 0.020202 0.001063 0.065554 0.016223 

14 8.1662 0.000284 5.87E+12 0.019113 0.070707 0.001351 0.065554 0.020616 

12 8.1662 0.000284 8.80E+10 0.052164 0.060606 0.003161 0.065554 0.048226 

6 8.1662 0.000284 296565.1 0.117018 0.030303 0.003546 0.065554 0.054093 

14 8.1662 0.000284 5.87E+12 0.019113 0.070707 0.001351 0.065554 0.020616 

8 8.1662 0.000284 19776986 0.139349 0.040404 0.00563 0.065554 0.085887 

9 8.1662 0.000284 1.62E+08 0.126439 0.045455 0.005747 0.065554 0.087672 

5 8.1662 0.000284 36316.17 0.085977 0.025253 0.002171 0.065554 0.03312 

12 8.1662 0.000284 8.80E+10 0.052164 0.060606 0.003161 0.065554 0.048226 

14 8.1662 0.000284 5.87E+12 0.019113 0.070707 0.001351 0.065554 0.020616 
8 8.1662 0.000284 19776986 0.139349 0.040404 0.00563 0.065554 0.085887 
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Table 7. n-call, t(min) ln(t) and ln( tω ) for 9;  12tω = = . 

Subsc n-call t(min) tω  ln(t) ln( tω ) 

1 4 2 12 0.693147 2.484907 

2 4 10 60 2.302585 4.094345 

3 13 7 42 1.94591 3.73767 

4 8 5 30 1.609438 3.401197 

5 3 7 42 1.94591 3.73767 

6 5 10 60 2.302585 4.094345 

7 5 4 24 1.386294 3.178054 

8 5 5 30 1.609438 3.401197 

9 2 1 6 0 1.791759 
10 4 8 48 2.079442 3.871201 
11 5 10 60 2.302585 4.094345 

12 6 6 36 1.791759 3.583519 

13 11 10 60 2.302585 4.094345 

14 5 7 42 1.94591 3.73767 

15 7 7 42 1.94591 3.73767 

16 8 2 12 0.693147 2.484907 

17 6 7 42 1.94591 3.73767 

18 7 6 36 1.791759 3.583519 

19 4 5 30 1.609438 3.401197 

20 2 4 24 1.386294 3.178054 

 
Table 8. No. of calls (hr), Pn(t), Joint Prob. prior and posterior probabilities. 

n-call (a) Exp(-a) a^n Prob. Prop. N Prior Pr. joint pr. Poste. Pr 

4 4.855 0.007789 555.5932 0.180321 0.035088 0.006327 0.088983 0.071104 

4 4.855 0.007789 555.5932 0.180321 0.035088 0.006327 0.088983 0.071105 

13 4.855 0.007789 8.33E+08 0.001042 0.035088 3.65E-05 0.088983 0.000411 

8 4.855 0.007789 308683.8 0.059634 0.035088 0.002092 0.088983 0.023515 

3 4.855 0.007789 114.4373 0.148565 0.035088 0.005213 0.088983 0.058583 

5 4.855 0.007789 2697.405 0.175092 0.035088 0.006144 0.088983 0.069043 

5 4.855 0.007789 2697.405 0.175092 0.035088 0.006144 0.088983 0.069043 

5 4.855 0.007789 2697.405 0.175092 0.035088 0.006144 0.088983 0.069043 

2 4.855 0.007789 23.57103 0.091801 0.035088 0.003221 0.088983 0.036199 

4 4.855 0.007789 555.5932 0.180321 0.035088 0.006327 0.088983 0.071105 

5 4.855 0.007789 2697.405 0.175092 0.035088 0.006144 0.088983 0.069043 

6 4.855 0.007789 13095.9 0.141678 0.035088 0.004971 0.088983 0.055867 

11 4.855 0.007789 35324952 0.006893 0.035088 0.000242 0.088983 0.002718 

5 4.855 0.007789 2697.405 0.175092 0.035088 0.006144 0.088983 0.069043 

7 4.855 0.007789 63580.6 0.098264 0.035088 0.003448 0.088983 0.038748 

8 4.855 0.007789 308683.8 0.059634 0.035088 0.002092 0.088983 0.023515 

6 4.855 0.007789 13095.9 0.141678 0.035088 0.004971 0.088983 0.055867 

7 4.855 0.007789 63580.6 0.098264 0.035088 0.003448 0.088983 0.038748 

4 4.855 0.007789 555.5932 0.180321 0.035088 0.006327 0.088983 0.071105 

2 4.855 0.007789 23.57103 0.091801 0.035088 0.003221 0.088983 0.036199 
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Table 9. Multivariate sample data. (A) Posterior prob. from group a; (B) Posterior prob. 
from group B. 

(A) 

S/No Variates 
1 0.055291 0.046639 
2 0.06091 0.065374 
3 0.061079 0.031912 
4 0.055124 0.059642 
5 0.055124 0.031912 
6 0.015424 0.059642 
7 0.015424 0.059642 
8 0.041878 0.043636 
9 0.055124 0.059642 

10 0.027841 0.059715 
11 0.06091 0.059715 
12 0.053992 0.059642 
13 0.055124 0.065374 
14 0.06091 0.059642 
15 0.053992 0.023915 
16 0.053992 0.043636 
17 0.061079 0.065374 
18 0.053992 0.043636 
19 0.06091 0.059715 
20 0.041878 0.001596 

(B) 

S/No Variates 

1 0.064962 0.071104 

2 0.064962 0.071105 

3 0.048226 0.000411 

4 0.032819 0.023515 

5 0.085887 0.058583 

6 0.048226 0.069043 

7 0.048226 0.069043 

8 0.079549 0.069043 

9 0.00596 0.036199 

10 0.016223 0.071105 

11 0.020616 0.069043 

12 0.048226 0.055867 

13 0.054093 0.002718 

14 0.020616 0.069043 

15 0.085887 0.038748 

16 0.087672 0.023515 

17 0.03312 0.055867 

18 0.048226 0.038748 

19 0.020616 0.071105 

20 0.085887 0.036199 
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Figure 4. Graph of ln(t) against ln( tω ). 

 
The variance-covariance matrix with two variates is given as: 

( )
2 2

2 1 1 1 2 1 2
2 2

1 2 1 2 2 2

1i i
x nx x x nx x

n S
x x nx x x nx

 − −
− =  

− − 

∑ ∑
∑ ∑

 

where n1 and n2 respectively stand for the first and second samples respectively 
[16]. 

The variances are: 
20

2 2
11 1 1

1
;X X nX= −∑  

20
2 2

22 2 2
1

X X nX= −∑  

The co-variances are: 
20

12 21 1 2 1 2
1

;X X X X nX X= = −∑  

The observed sample multivariate data are the respective posterior probabilities 
of the four groups, the tendency is that their respective means will be equal the-
reby making the difference in the means vector to be zero. The reason behind 
this is that the sum of probabilities is one (1). But we can overcome this by ob-
serving the sample data carefully. Any of the sample point that cannot be ap-
proximated to two decimal places (2.d.p) with value is regarded as zero, and the 
sample size adjusted accordingly. Hence from sample A; delete serial number 19 
from column 2; therefore, variate 1 has n = 20 and variate 2 has n = 19. Similar-
ly, from sample B; delete serial numbers 3 and 13 from column 2; therefore, va-
riate 1 has n = 20 and variate 2 has n = 18. The adjusted variance-covariance 
matrix for sample A are: 

variances: 2 2
11 1 1

1
;

n
X X nX= −∑ , ( )

1
2 2

22 2 2
1

1
n

X X n X
−

= − −∑  

co-variances: 
1

1 2
12 21 1 2 1 2

1
;

2

n n nX X X X X X
− +

= = −∑  

And 
The adjusted variance-covariance matrices for sample B are: 

Variances: 2 2
11 1 1

1
;

n
X X nX= −∑  ( )

2
2 2

22 2 2
1

2
n

X X n X
−

= − −∑  

co-variances: 
2

1 2
12 21 1 2 1 2

1
;

2

n n nX X X X X X
− +

= = −∑   
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The above is a symmetric matrix, where the diagonal elements are the va-
riances. The upper and lower entries are the covariance. The values of the ma-
trices are presented below. 

From sample A and B, we have: 

( ) 0.05
0.05255

AX  
=  
 

; ( ) 0.05
0.055382

BX  
=  
 

 

( ) 2 0.0039 0.0012
1

0.0029A An S
− 

− =  
 

 

From sample B, we have: 

( ) 2 0.0129 0.0048
1

0.0053B Bn S
− 

− =  
 

 

The pooled sample dispersion matrix is 

( )
0.0168 0.00168

2
0.0082A B A Bn n S +

− 
+ − =  

 
 

The dispersion matrix is 

0.0004541 0.00004541
0.0002216A BS +

− 
=  
 

 

The inverse of the dispersion matrix is 

1 2248.229 460.70423
4607.0423A BS −

+
 

=  
 

 

The linear discriminant function is 

( ) ( )( )T1 2T 1
A BX S x xβ −
+= −  

The differences in the sample mean vector for sample A and B 

( ) ( ) 0
0.002832

A BX X  
− =  

 
 

Since the variates are the posterior probabilities which cannot be negative, the 
difference in the mean vector cannot be negative. 

( ) ( )( )T 1 A B
A BX S X Xβ −
+= −  

( )1 2

2248.229 460.70423 0
4607.0423 0.002832

X Xβ
   

=    
   

 

1 21.30471 13.0471x xβ = +  

( ) ( )1.30471 0.05 13.0471 0.05255 0.7509Aβ = + =  

( ) ( )1.30471 0.05 13.0471 0.055382 0.7226Bβ = + =  

The optimal classifier for discrimination is 

( )1
2A B A Bβ β β+ = +  

( )1 0.7509 0.7226 0.7368
2A Bβ + = + =  
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4. Classification Rule/Conclusion 

Classify subscribers in group A whose posterior probability is 0.7368 and above 
into group A1 and those whose posterior probability falls below 0.7368 into 
group A2. Also classify subscribers in group B whose posterior probability is 
0.7368 and above into group B1 and those whose posterior probability falls below 
0.7368 into group B2. 

The subscribers that belong to A1 and B1 are the fraudulent subscribers while 
those that belong to A2 and B2 are the legitimate subscribers. From the sample 
observations in Table 9(A) and Table 9(B), all the subscribers are legitimate 
because their posterior probabilities are less than the optimal classifier A Bβ + . 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] João, V.C. (2014) Telecommunication Fraud Detection Using Data Mining Tech-

nique. M.Tech Thesis, Faculty of Engineering, Electrical and Computers Engineer-
ing, University of Porto, Porto. 

[2] Saravanan, P., Subramaniyaswamy, V., Sivaramakrishnan, N., Arun Prakash M. and 
Arunkumar, T. (2014) Contemporary Engineering Sciences, 7, 515-522. 

[3] Amal, M.A., Mehmet, S.A. and Rasheed, A. (2014) A Survey on Data Mining Tech-
niques in Customer Churn Analysis for Telecom Industry. International Journal of 
Engineering Research and Applications, 4, 165-171. 

[4] Umman, T.Ş.G. (2010) Customer Churn Analysis in Telecommunication Sector. Is-
tanbul University Journal of the School of Business Administration Cilt, 39, 35-49. 

[5] Chang, Y.-T. (2009) Applying Data Mining to Telecom Churn Management. IJRIC, 
67-77. 

[6] Balasubramanian, M. and Selvarani, M. (2014) Churn Prediction in Mobile Telecom 
System Using Data Mining Techniques. International Journal of Scientific and Re-
search Publications, 4, 1-5. 

[7] Nabareseh, S. (2017) Predictive Analytics: A Data Mining Technique in Customer 
Churn Management for Decision Making. Ph.D. Dissertation, Faculty of Manage-
ment and Economics, Tomas Bata University in Zlín, Zlín. 

[8] Laudon, K.C., Laudon, J.P. and Brabston, M.E. (2002) Management Information 
System: Managing the Digital Firm. Pearson Education Canada Inc., Toronto. 

[9] Alexopoulos, P. and Kafentzis, K. (2007) Towards a Generic Fraud Ontology in E 
Government. ICE-B, 269-276. 

[10] Hollmen, J. (2000) User Profiling and Classification for Fraud Detection in Mobile 
Communication Networks. Ph.D. Thesis, Department of Cognitive and Computer 
Science and Engineering, Helsinki University of Technology, Espoo.  

[11] Hiyam, A. and Tawashi, E. (2010) Detecting Fraud in Cellular Telephone Networks 
Jawwal Case Study. MBA Thesis, Department of Business Administration, Faculty 
of Commerce, Islamic University, Gaza. 

[12] Kabari, L.G., Nanwin, D.N. and Nquoh, E.U. (2015) Telecommunications Subscrip-
tion Fraud Detection using Artificial Neural Networks. Transactions on Machine 

https://doi.org/10.4236/ojop.2019.81002


H. O. Amuji et al. 
 

 

DOI: 10.4236/ojop.2019.81002 31 Open Journal of Optimization 
 

Learning and Artificial Intelligence, 3, 19-33. 

[13] Amuji, H.O., Ogbonna, C.J., Ugwuanyim, G.U., Iwu, H.C. and Nwanyibuife, O.B. 
(2018) Optimal Water Pipe Replacement Policy. Open Journal of Optimization, 7, 
41-49. https://doi.org/10.4236/ojop.2018.72002 

[14] Watson, T., Colin, C., Mason, A. and Smith, M. (2001) Maintenance of Water Dis-
tribution System. 36th Annual Conference of American Water Works Association. 

[15] Chukwu, W.I.E and Amuji, H.O. (2016) Probability, Distribution Theory and Infe-
rence. 2nd Edition, Prudent Tower Publications, Enugu, Vol. 2, 12. 

[16] Chatfield, C. and Zidek, J.V. (1995) Modelling and Analysis of Stochastic Systems. 
Chapman and Hall, London. 

[17] Arua, A.I., Chigbu, P.E., Chukwu, W.I.E., Ezekwem, C.C. and Okafor, F.C. (2000) 
Advanced Statistics for Higher Education. Academic Publishers, Nsukka, Vol. 1, 82. 

[18] Ogbonna, C.J. and Amuji, H.O. (2018) Analysis of the Impact of Treasury Single 
Account on the Performance of Banks in Nigeria. Open Journal of Statistics, 8, 
457-467. https://doi.org/10.4236/ojs.2018.83029 

 
 

https://doi.org/10.4236/ojop.2019.81002
https://doi.org/10.4236/ojop.2018.72002
https://doi.org/10.4236/ojs.2018.83029

	Optimal Classifier for Fraud Detection in Telecommunication Industry
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	3. Analysis
	4. Classification Rule/Conclusion
	Conflicts of Interest
	References

