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Abstract 
It is known that the solutions of a second order linear differential equation 
with periodic coefficients are almost always analytically impossible to obtain 
and in order to study its properties we often require a computational ap-
proach. In this paper we compare graphically, using the Arnold Tongues, 
some sufficient criteria for the stability of periodic differential equations. We 
also present a brief explanation on how the authors, of each criterion, ob-
tained them. And a comparison between four sufficient stability criteria and 
the stability zones found by perturbation methods is presented. 
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1. Introduction 

The second order differential equations are often encountered in engineering and 
physical problems, and they have been studied for more than a hundred years. The 
Hill equation is a particular and representative equation among the linear periodic 
equations, and it receives its name after the work of W. Hill on the lunar perigee. 
The Hill equation can be used to describe from the simples dynamical systems to 
the more complex systems; from a child playing on a swing or a spring mass 
system [1] to the suspension bridges [2] or the flow of the light in a 1D photonic 
crystal [3]. The complexities of studying the properties of periodic systems often 
demand a computational approach. However we are not so much interested in 
the exact shape of the solutions but in the question whether the solution is stable 
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or unstable. By stable solution we mean one that is bounded in the whole real 
line. 

For any linear T-periodic ODE, the knowledge of the state transition matrix in 
one period; [ ]0,t T∈ , gives us sufficient information to know the solution in any 
t∈ . The main problem with the determination of the stability of a periodic sys-
tem solutions lies in the calculation of the state transition matrix, which is almost 
always impossible to obtain analytically. Hence it is desirable to find some criteria 
for determining the stability of solutions without the need of obtain them. Zhu-
kovskii [4] gave one of the most known sufficient condition for stability, namely; 
let the differential equation ( ) 0x p t x+ =  with ( ) ( )p t T p t+ = , if  

( ) ( )2 22 2

2 2

1 ππ nn p t
T T

+
≤ ≤  then the solutions of the periodic system are stable.  

Lyapunov in his celebrated work “The general problem of the stability of motion” 
[5] developed an approximation of the discriminant1 of the periodic system (see 
section 2) and obtained a variety of sufficient stability conditions, being the most 
known the one here presented. Authors such as Borg [4] Yakubovich [6] [7] and 
Tang [8] had taken advantage of the properties of the Hamiltonian structure in 
order to obtain sufficient conditions for stability. Hochstadt [9] [10] and Xu [11] 
had made use of the properties of the Sturm-Liouville equation and by means of 
successive approximations, respectively, in order to develop a new discriminant 
approximation and then finding sufficient criteria for stability. 

The aim of the present work is to collect and graphically display some of the 
most known and efficient sufficient criteria for the stability of the periodic diffe-
rential equation ( )( ) 0x p t xα β+ + = , ( ) ( )p t T p t+ = , known as Hill’s equa-
tion. There is a vast number of stability criteria, in the literature, they are based 
on different approaches, here we present an easy explanation of four of those 
approaches starting with: a) the approximation of the discriminant due to Lya-
punov followed by; b) canonical forms (Hamiltonian structure); c) Sturm-Liouville 
equation properties and ending with d) another discriminant approximation due 
to Shi [12]. Each stability criterion will be used in order to find zones in the 
α β−  plane, where the solutions are stable, for the best known forms of Hill’s 
equation, Mathieu, Meissner and Lyapunov equations i.e., for equations of the 
form 

( )( )
( )( )( )

( ) ( )

Mathieu 2 cos 0

Meissner cos 0

32 3Lyapunov cos cos 2 0
25 4

x t x

x sign t x

x t t x

α β

α β

α β

+ + =

+ + =

  + + + =     







 

the scaling factor 2  and 32
25

 of the excitation functions related to the Ma-

 

 

1Let 1x  and 2x  be two linearly independent solutions of a periodic differential equation subject to 

the initial conditions ( )1 0 1x t = , ( )1 0 0x t = , ( )2 0 0x t =  and ( )1 0 1x t = , then the discriminant is 

equal to ( ) ( )1 2x T x T+  , T  is the minimum period of the differential equation. 
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thieu and Lyapunov equations were added so its [ ]2 0, 2π  norm be equal to 

2π  that is, ( )2π 2

0
d 2πp t t =∫ , for each excitation function. The excitation 

function of the classical Mathieu equation is ( ) ( )cosp t t= , if we want the exci-

tation function to have [ ]2 0, 2π 2π=  we must multiply the function ( )cos t  

by a constant a, since ( )2π 2 2
0

cos d πa t t a=∫  then, 2a = ; by doing a similar 

procedure for the classical Meissner ( ( ) ( )( )cosp t sign t= ) and Lyapunov 

( ( ) ( ) ( )3cos cos 2
4

p t t t= + ) we get the equations given above. 

This work is structured as follows: Section 2 is dedicated to introduce some 
basic concepts on periodic differential equations and its solutions; in section 3 
we give the discriminant approximation made by Lyapunov and the first two cri-
teria are presented; section 4 is devoted to the study of canonical (Hamiltonian) 
systems, some properties of such systems solutions are described and four crite-
ria are presented; In section 5 two criteria based on Sturm-Liouville equation 
properties are exhibit, both criteria follows from solutions proposed by Hoch-
stadt in [13]; in section 6 we briefly present a new approximation of the discri-
minant of the Hill equation obtained by Shi and a criterion do to Xu. In section 
7 some conclusions, about the efficiency of the criteria, are presented and a 
comparison between four stability criteria and the stable zones found by pertur-
bation methods (Linsdtedt-Poincare method) is done. A brief introduction to pe-
riodic Hamiltonian systems solutions is given in the appendix. 

2. Preliminaries 

Consider the linear differential equation with periodic coefficients  

( )( ) 0y p t yα β+ + =

                      
(1) 

where ( ) ( )p t T p t+ =  is a periodic piece-wise continuous real function with 

zero average, i.e. ( )
0

1 d 0
T
p t t

T
=∫ , and ,α β  are real constants; Equation (1) is 

known as Hill equation. One can prove that (1) is equivalent to the system  

( )( ) 0y q t yλ+ + =

                      
(2) 

where ( )q t  is a T periodic real function and λ  is a real constant. Throughout 
the document we will use system (1) or (2) indistinctly. 

We say that a system is stable if and only if all its solutions are bounded in the 
whole real line. It is known that for some values of the parameters α  and β  
(or λ ) the Equation (1) has bounded solutions and for some others the solu-
tions grow without bounds. The plane of parameters α β−  can be splited into 
stable zones (where all solutions are stable) and unstable zones (where at least 
one solution is unstable). Stable and unstable regions are separated by some 
curves known as transition curves, these transition curves are defined by having 
at least one periodic or anti-periodic solution [14]. Unstable regions are called 
Arnold tongues after remarkable works of V. A. Arnold on Mathieu equation 
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[15]. It can be proved that, for 0β β=  constant, the stable regions alternate 
with unstable zones, see Theorem 2.1 below. 

By the usual change of variables, 1x y=  and 2x y=  , Equation (1) may be 
rewritten as 

( )
( )

0 1
0

B t

x x
p tα β

 
=  − − 







                     

(3) 

where 1

2

x
x

x
 

=  
 

; and ( ) ( ) 2 2B t B t T ×= + ∈ . Notice that (3) may also be writ-

ten as the Hamiltonian system 

( )x JH t x=                          (4) 

where ( )H t  is the symmetric and T periodic matrix ( ) ( ) 0
0 1

p t
H t

α β+ 
=  
 

 

and 
0 1
1 0

J  
=  − 

. The Equation (4) may be taken as a definition of Hamiltonian 

system and it will be used in section 4. 
Let ( )0,t tΦ  be the state transition matrix of the system (3), from Floquet 

Theorem it is known that the matrix ( )0,t tΦ  may be written as a multiplica-
tion of three matrices, two of them are time dependent matrices and one con-
stant matrix; one of the time independent matrices is bounded and periodic, and 
the other is an exponential one, the former gives us information about the phase 
of the solutions and the latter contains information about the growth of the so-
lutions, see [16] or [14]. Such factorization is 

( ) ( ) ( ) ( )01
0 0, R t tt t F t e F t−−Φ =                    (5) 

where ( ) ( )F t F t T= +  is a real bounded matrix, and R is a 2 2×  constant 
matrix not necessarily real. Factorization (5) is due to Floquet [17]. Notice that if 
we assume 0 0t =  then, ( ) 20F I= , and if we define the Monodromy Matrix 
M  as ( ),0M TΦ  then, from Equation (5) one can infer 

( ),0 RTT M eΦ = =                        (6) 

so, the growth of the system solutions are related with monodromy matrix M . 
For better understanding notice that for all 0t ≥ , t kT τ= + , 0, )Tτ ∈  and 
for some positive integer k any solution of (3) can be written as 

( ) ( ) ( )
( ) ( )( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

,0 0

, , 1 ,0 0

, ,0 0

,0 0

k

k

x t t x

kT kT kT k T T x

kT kT T x

M T x

τ

τ

τ

= Φ

= Φ + Φ − Φ

= Φ + Φ

= Φ



         

(7) 

thus one can conclude the following 
Theorem 2.1. Let iµ  be the eigenvalues of the monodromy matrix M . The 

system (3) is: 
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a) Asymptotically stable if and only if all the eigenvalues iµ  of the mo-
nodromy matrix are 1iµ < ;  

b) Stable if and only if all 1iµ ≤  and if any iµ  has modulo one then it 
must be a simple root of the minimal polynomial of M ; and 

c) Unstable if and only if there is a iµ  such that 1iµ >  or if all 1iµ ≤  
and there exists a jµ  such that 1iµ =  and it is a multiple root of the minimal 
polynomial of M .  

Since Equation (3) can be written as a Hamiltonian system, the matrix 
( )0,t tΦ  is a symplectic matrix2 [[14], Chapter 2 § 3.4], in other words the cha-

racteristic multipliers of the monodromy matrix ( ),0TΦ  are symmetric with 
respect to the unitary circle, thus the solutions of (3) can not be asymptotically 
stable. And the only chance for the solutions of (3) are to be bounded or unsta-
ble. 

Let ( )f t  and ( )g t  be real solutions of (2) subject to the initial conditions 

( ) ( )
( ) ( )
0 1 0 0
0 0 0 1

f g
f g

= =
= =

                       
(8) 

Then the state transition matrix associated to (2) is  

( ) ( ) ( )
( ) ( )

,0
f t g t

t
f t g t

 
Φ =  

 




                     
(9) 

and the characteristic multipliers3 are solutions of the characteristic equation 

[ ] ( )2
2det 2 1 0i i iM I Aµ µ λ µ− = − + =               (10) 

where the independent term is equal to one because of the Liouville theorem4 
[19] and the function  

( ) ( ) ( )( ) ( )1 1
2 2

A f T g T Trace Mλ = + =

             
(11) 

is known as the characteristic constant or the discriminant associated to (2) and 
it plays a fundamental roll on the determination of the stability of the system, 
the Trace operator in (11) is the sum of the main diagonal entries of a square 
matrix. By Floquet theory, the condition for the solutions, ( )f t  and ( )g t , to 
be stable may be restated as: If ( )2 1A λ < , both solutions are stable; if 

( )2 1A λ >  one solution is stable and one unstable; if ( )2 1A λ =  then one solu-
tion is periodic when ( ) 1A λ = , (or anti-periodic when ( ) 1A λ = − ); and the 
second solution may or may not be periodic (anti-periodic). 

The Haupt oscillation Theorem asserts that the λ  real line can be split into 
alternating intervals known as stability and instability intervals, the former are 
characterized by ( ) 1A λ <  and the latter by ( ) 1A λ > , the endpoints of the 

 

 

2We say that a matrix B  is symplectic if the condition B JB J′ =  is fulfilled. Symplectic matrices 
are of even order and they form a group [18] 
3The monodromy matrix eigenvalues iµ  are usually called characteristic multipliers or just multip-
liers. 
4The fact that the independent term be equal to one follows from the symplectic matrix property that 
states that the determinant of a symplectic matrix is equal one. 
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intervals ( ) 1A λ =  are characterized by values of λ  for which the system (2) 
has at least one periodic solution. The Haupt oscillation Theorem [20] is as fol-
lows 

Theorem 2.2. For the differential equation ( )( ) 0x q t xλ+ + = . There exists 
an infinite sequence  

0 1 2 3 4λ λ λ λ λ< ≤ < ≤ <                    (12) 

such that ( ) 1iA λ = . There exists a second infinite sequence 

1 2 3 4λ λ λ λ′ ′ ′ ′≤ < ≤ <                      (13) 

such that ( ) 1iA λ′ = − . Both sequences do not have accumulation points, 

i iλ →∞→∞  and i iλ →∞
′→∞ . These two sequences interlace such that  

0 1 2 1 2 3 4 3 4λ λ λ λ λ λ λ λ λ′ ′ ′ ′< ≤ < ≤ < ≤ < ≤ <             (14) 

whenever λ  lies in one of the intervals  

( ) ( ) ( ) ( )0 1 2 1 2 3, , , , , , , 1Aλ λ λ λ λ λ λ′ ′ ′ <

              
(15) 

if λ  lies in  

( ) ( ) ( ) ( )0 1 2 1 2, , , , , , , > 1Aλ λ λ λ λ λ′ ′−∞ 

              
(16) 

The proof of the Theorem is based on the fact that the functions ( ) 1 0A λ − =  
and ( ) 1 0A λ + =  are entire functions of the real variable λ  and its order of  

growth for λ →∞  is exactly 
1
2

, see [20] [21] [22]. Then, ( ) 1 0A λ − =  and 

( ) 1 0A λ + =  have infinitely many zeros. 

Notice that the Theorem 2.2 establishes conditions, in terms of λ , for the 
solutions of (2) to be stable; Theorem 2.2 is easily restated so that the stability 
conditions depend on the parameters α  and β  of the system (1). It is well 
known that the stability of solutions of any Hill equation, of the form (1), can be 
represented as a stability chart in the plane of parameters α β− , unstable zones 
are called Arnold tongues. Figure 1 shows the stable and unstable zones, in the 
α β−  plane, of the Mathieu, Meissner and Lyapunov equations.  

3. Stability Criteria Based on Lyapunov Approximation 

In [5] Lyapunov proposed a method to approximate the discriminant ( )A λ  
associated to the equation ( ) 0x p t x+ =  when ( ) 0p t ≥ , and in [23] he 
delved into the study of the approximation properties. In order to be consistent 
with Theorem 2.2 we will consider ( ) ( )p t q tλ= + . The estimation consist in 
the alternating series  

( ) ( )0 1 2 1 n
nA A A A Aλ = − + + + − +                (17) 

where each coefficient is defined as a definite n-multiple integral, that is 

( )0 1 0
1, d

2
TTA A p t t= = ∫  

( )( ) ( ) ( )1
2 1 1 2 1 2 1 2 20 0

1 d d
2

T t
A t T t t t t p t p t t= − + −∫ ∫

          
(18) 
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Figure 1. Stability chart for (a) Mathieu, (b) Meissner and (c) Lyapunov equations, stable areas in white and unstable areas in 
gray. 
 

  

( )( ) ( ) ( ) ( )1 1
1 2 1 1 2 1 10 0 0

1 d d
2

nT t t
n n n n n nA t dt T t t t t t t p t p t t−

−= − + − − ⋅∫ ∫ ∫  

 
(19) 

notice that the sub-index of each coefficient nA  is equal to the order of the 
n-multiple integral, that is, the coefficient 3A  requires a triple definite integral 
to be calculated, 4A  requires a forth order definite integral to be calculated, and 
so on. 

In [23] Lyapunov studied in depth the properties of the approximation for 
( )A λ  such as the convergence of the series and the monotonic decrease of the 

series coefficients. One can prove that for 1n >  the coefficients , 1nA n >  sa-
tisfy the inequality  

1 1 0n nA A nA− − >                        (20) 

For details of the inequality (20) see appendix A. Using (20) Lyapunov got the 
following 

Criterion 3.1. (Lyapunov 1). If ( ) 0p t ≥ , and if it satisfies the condition  

( )
0

d 4
T

T p t t ≤∫                         
(21) 
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then the solutions of ( ) 0x p t x+ =  are stable.  
Remark 3.2. As far as knowledge of the authors, the only reference in which 

this criterion is graphically shown is [[24], pp. 205]  
Before proceeding, we shall call the interval ( )0,λ−∞  the zeroth instability 

zone, the intervals ( )1 2,λ λ′ ′  and ( )1 2,λ λ  the first and the second instability 
zone and so on. Similarly the intervals ( ) ( ) ( )0 1 2 1 2 3, , , , ,λ λ λ λ λ λ′ ′ ′  are called the 
zeroth, first and second stability zones respectively. 

Next criterion can be proved by using the above described Lyapunov method 
[14]. 

Criterion 3.3 (Lyapunov 2). If  

( ) 2p t a≥ −                          (22) 

and  

( ) ( )( )2
0 0

d 0,   2 coth
2

T T aTp t t p t a a  ≥ + ≤  
 ∫ ∫

           
(23) 

where 
2

2
2

π0 a
T

≤ ≤ . Then, ( )p t  belongs to the zero stability domain.  

Figure 2 shows the stability zones obtained by applying the criteria Lyapunov  
 

 
Figure 2. Sufficient stability zones of (a) Mathieu, (b) Meissner and (c) Lyapunov equations by using Lyapunov 1 (blue) and Lya-
punov 2 (red) criteria. 
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1 and Lyapunov 2 on Mathieu, Meissner and Lyapunov equations. 
The blue and red areas are the stability zones found by criterion 0.3 and crite-

rion 0.5 respectively. From the Lyapunov 2 criterion, one can see that the  

parameter a must fulfill the inequality 
10
2

a< < . The stability area found by the  

Criterion 0.5 is obtained by calculating the stability area defined by the equation 
(23) and 500 different values of a, equispaced in the interval [ [0,0.5 , and then, 
merging the 500 resulting areas. 

From Figure 2 one can notice that the blue and red regions are the same for 
the three equations. This is because the integrals of ( )cos t , ( )( )cossign t  and  

( ) ( )3cos cos 2
4

t t+  are all equal to zero, so both criteria depends only on the real 

constants α  and a . 
For more criterion based on Lyapunov method see [14] where a whole chapter 

is dedicated to study stability of the characteristic constant ( )A λ . 

4. Stability Criteria Based on Properties of Canonical Forms 

Consider a second order system in canonical (Hamiltonian) form 

( )x JH t x=                          (24) 

where 1

2

x
x

x
 

=  
 

, ( )H t  is a symmetric real periodic matrix  

( ) ( ) ( )TH t T H t H t+ = =  and J  is the skew symmetric matrix defined in sec-
tion 2. 

The state transition matrix of (24) may be expressed as  

( ) ( )
( ) 2

,0

0,0

tKt F t e

I

Φ =

Φ =                       
(25) 

where ( ) ( )F t T F t+ =  or ( ) ( )F t T F t+ = − , ( )( )det 1F t = , ( )F t  is a real 
matrix function, and K is a real matrix with ( ) 0Tr K = , see appendix B. It can 
be proved that matrix K could be defined as5 

( )1 lnK M
T

= ±
                       

(26) 

where the sign ±  is chosen so that K be real. From the factorization (25) we 
can notice that the stability of the canonical system (24) depends on the expo-
nential matrix KTe  and therefore on the matrix K; it can be proved that the 
matrix K is similar to one of the three matrices shown in Table 1. The set of all 
possible matrices K could be divided into subsets depending on the determinant 
sign of each matrix K, following the nomenclature of [14], we will say that: a) 
K ∈  i f  ( )det 0K < ;  b )  K ∈Π  i f  ( )det 0K = ;  a n d  c )  K ∈  i f 

( )det 0K > . So, if K ∈  then (24) has one stable solution and one unstable 
solution (the characteristic multipliers are real and distinct from 1± ); if K ∈Π   

 

 

5In [25], Theorem 1.4.2, gives necessary and sufficient conditions for a non-singular real matrix to 
have a real logarithm. 
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Table 1. Relation between the subsets  , Π  and   and the stability of canonical 
system solutions (24),  , λ  and φ  are real positive constants. 

 K is similar to K ∈  µ  ( )x t  and ( )y t  

a) 10
0

S S
λ

λ
− 

 − 
   

 

Unstable 

b) 10
0 0

S S − 
 
 


 Π  

 

Unstable (in general) 

c) 10
0

S S
φ

φ
−− 

 
 

   

 

Stable 

 
with 0≠ , see Table 1, then (24) has one periodic solution ( )x t  and one un-
stable solution ( )tx t , with 0=  both solutions are stable and periodic (the 
characteristic multipliers are 1+  or 1− ), these solutions corresponds to coex-
istence6; and, if K ∈  then both solutions are bounded (the characteristic 
multipliers are complex, lie on the unit circle and are distinct from 1± ). All of 
these properties are summarized in the Table 1.  

Remark 4.1. The subset Π  defines the transition boundaries, i.e., Π  de-
fines lines on the α β−  plane separating the stable zones from the unstable 
ones. Moreover if K ∈Π  and 0≠  then (24) has one periodic stable solution 
( )x t  and one unstable solution of the form ( ) ( ) ( )1y t y t tx t= + .  
Let Ω  be the set of real continuous function matrices ( )F t  with 
( ) ( )F t T F t+ = ±  and ( )( )det 1F t = . And, let ( )x F t a=  be a solution of 

Hamiltonian system (24), where a is a non-zero arbitrary vector and let xϕ  de-
note the rotation of the solution x in time T, since ( ) 2F T I= ±  it follows that 

πx nϕ = . Let nΩ  denote the set of matrices ( )F t  such that the rotation over a 
period T is πx nϕ = , and nn

∞

=−∞
Ω = Ω


, each of the subsets nΩ  are disjoint 
sets [14]. 

By the above mentioned properties, of the subsets Π ,  ,   and nΩ , we 
can say that the symmetric matrix ( )H t  in (24) belongs to one of the subsets 

n nΩ ×  , n nΠ Ω ×Π  or n nΩ ×   if and only if the pair ( )( ),F t K  
defined by the state transition matrix of (24) are: ( ) nF t ∈Ω , and K belongs to 
 , Π  or   respectively, that is, ( ) nH t ∈  if and only if ( ),0 ntΦ ∈  
and so on. 

 

 

6Coexistence refers to the simultaneous existence of two linearly independent solutions of period T 
or 2T of (1) or (24). 
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Let ( ) nH t ∈ , i.e. the system (24) is stable and ( ) nF t ∈Ω  and K ∈ , 
then the rotation ϕ  of all the solutions of (24) will be ( )π 1 πn nϕ< < + . The 
sketch of the proof is as follows, by assumption ( ) nF t ∈Ω  and K ∈ , from 
(25) we know that any solution of (24) can be written as ( )x F t y=  where 
( ) ( )0tKy t e y= , from form (c) it follows 

( ) ( ) ( )
( ) ( ) ( )1cos sin π0 , 0

sin cos
t t

y t S S y
t t T
φ φ

φ
φ φ

− − 
= < < 

           
(27) 

with ( )1 0b S y−=  and ( )det 1S = . Thus ( )1S y t−  moves uniformly in a circle, 
describing and angle Tφ  in time T. Since 0 πTφ< <  then 0 πyϕ< <  and 
finally ( )π 1 πn nϕ< < + . 

Remark 4.2. Let ( )x F t a= , ( )y F t b= , be two linear independent solutions 
of (24), and [ ],Z x y=  then  

( ) ( ) [ ]( ) ( ) ( )det det det , det [ , ] sinZ F t a b a b a b θ= = =  so the area of the pa-
rallelogram defined by x  and y , do not change do to the influence of ( )F t  
and vectors x , y  cannot overlap each other neither πθ ≥ . Then the rotation 
number of x  and y  must coincide.  

Remark 4.3. The definition of the subsets nΠ , n  and n  allows us to 
discriminate between stable (unstable) zones where the solutions rotation have 
similar properties, see appendix B.  

Remember that every linear Hamiltonian system (24) may be defined as  

( )

( )

,

,

H p q
p

q
H p q

q
p

∂
= −

∂

∂
=

∂





                       

(28) 

where ( ),H p q  is the quadratic form  

( ) T1,
2

H p q x Hx=
                      

(29) 

the matrix H  is the symmetric matrix associated to (24) and ( ) ( )
( )

q t
x t

p t
 

=  
 

 is  

a solution of the same equation. Defining ( )x tω  as the argument of ( )x t  and 
deriving 

( )

( ) ( )
2 2 2 2

arctan

d 2 ,
d

x

x

qt
p

t H p qqp pq
t p q p q

ω

ω

 
=  

 

−
= =

+ +
 

                 

(30) 

it follows from the multiplication [ ] [ ]q q
p q q p H

p p
   

− =   
   





. Integrating (30) 

we get 

( ) ( )
( ) ( )( )

( ) ( )
1 1

12 20
1 1

2 ,
0 d

t
x x

H p t q t
t t

p t q t
ω ω= +

+∫
              

(31) 
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and then  

( ) ( )( )
( ) ( )

1 1
12 20

1 1

2 ,
d

T H p t q t
t

p t q t
φ =

+∫
                   

(32) 

and then ( ) ( )min max0 0
d d

T T
xh t t h t tϕ≤ ≤∫ ∫ , where ( )minh t  and ( )maxh t  be the 

smallest and largest eigenvalues ( )H t . The latter procedure was obtained from 
[6]. Following the aforementioned, V. A. Yakubovich proved the following 

Criterion 4.4. (Yakubovich 1). Let ( )minh t  and ( )maxh t  be the smallest and 
largest characteristic values of the matrix ( )H t  in (24). And let 

( ) ( ) ( )min max0 0
π 1 π

T T
n h t h t n< ≤ < +∫ ∫                

(33) 

then the Hamiltonian system (24) belongs to the n-th stability region n  
( 0,1,2,3,n =  ).  

One must notice that Hill’s Equation (1) could be written as in (24), setting 

1y x= , 2y x=   and ( ) ( )q t p tα β+ , one gets 

( )

( )

1 1'

2 2

0
0 1

H t

y yq t
J

y y
    

=     
    







                   

(34) 

thus Hill’s equation could be seen as a Hamiltonian system. 
It is easy to verify that (34) may be written as  

( )1 1'

2 2

1 0

0

cy cyq t
J cy yc

     =        





                  

(35) 

where c is a positive real constant. Then the smallest and largest eigenvalues of 
( )H t  are 

( )
( ) ( )

( )

( )
( ) ( )

( )

2

min
2

2

max
2

1 if

 if

1 if

 if

q t q t c
ch t
c c q t

q t q t c
ch t
c c q t

 <= 
 <
 >= 
 >                   

(36) 

Notice that the Yakubovich 1 criterion inequalities could be reformulated as 
follow. For simplicity consider the Meissner equation, the integral over one pe-
riod of the functions ( )minh t  and ( )maxh t  are 

( )
( )( )

( )( )

2
2π

min0
2

2π  if cos
d

2π  if cos

sign t c
ch t t

c c sign t

α α β

α β

 + <= 
 < +

∫
          

(37) 

( )
( )( )

( )( )

2
2

max0
2

2π  if cos
d

2π  if cos

sign t c
ch t t

c c sign t

π α α β

α β

 + >= 
 > +

∫
         

(38) 

obviously the inequalities ( )( ) 2cossign t cα β+ <  and ( )( ) 2cossign t cα β+ >  
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are fulfilled if 2cα β+ <  and 2cα β− >  respectively. So, for the 2cα β+ <  
case we get that the sufficient stability condition reduces to  

( )2 2 2 1n c n
c
α< ≤ < +

                    
(39) 

and for the 2cα β− >  case we get 

( )22 2 1n c n
c
α< ≤ < +

                    
(40) 

In fact the inequalities (39) and (40) are invariant as long as the periodic exci-

tation function ( )p t  has zero mean, ( )
0

1 d 0
T
p t t

T
=∫ . Then the conditions for 

Mathieu, Meissner and Lyapunov equations to have stable solutions are: 

( )
[ ]

( )

( )
[ ]

( )

2

0,

2

0,

2ln 2 2 1 if max

22 2 1 if min

t T

t T

c n p t c
c

n c n p t c
c

α α β

α α β

∈

∈

< ≤ < + + <

< ≤ < + + >
          

(41) 

where the function ( )p t  is the excitation function of each periodic differential 
equation, see section 1. 

Figure 3 shows the stability zones obtained by applying Yakubovich 1  
 

 
Figure 3. Sufficient stability zones of (a) Mathieu (b) Meissner and (c) Lyapunov equations by using Yakubovich 1 (blue) criterion. 
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criterion and the definitions of ( )minh t  and ( )maxh t  given in (36) to the Ma-
thieu, Meissner and Lyapunov equation. 

For blue stable areas we have calculated the Yakubovich 1 stability criterion 
for 200 different values of 0 3c< ≤  and then we merge the resulting areas. 

By Yakubovich 1 criterion, a sufficient condition for (35) to belong to n  
with ( ) 2q t c≡  is  

( )1 ππ nn c
T T

+
< <

                       
(42) 

Set  

( ) ( ) ( )

( ) ( ) ( )

2
0

2
1 10

inf d over all

inf d over all

T
n n

T
n n

c q t c t q t

c q t c t q t

ρ

ρ + +

′ = − ∈Π

′′ = − ∈Π

∫

∫           

(43) 

where nΠ  are the boundaries of instability areas n , the boundary of n  
are the sets nΠ  and 1n+Π . Suppose that for some function ( )q t  

( ) ( ) ( )2
10

inf d min ,
T

n nq t c t c cρ ρ +′ ′′− <   ∫              
(44) 

in words, this condition establishes that the distance from 2
nc ∈  to the func-

tion ( )q t  is less than the distance from 2c  to the boundary of n , so the 
function ( ) nq t ∈ . Thus inequality (44) is a test for the stability of (24). This 
test requires the explicit expressions for ( )n cρ′  and ( )n cρ′′ . The next three cri-
teria use inequality (44) and the expressions of ( )n cρ′  and ( )n cρ′′  to found 
sufficient conditions for the stability of the Hamiltonian system (24). 

Now consider the differential equation 

( ) 0x q t x+ =                         (45) 

where ( )q t  is a non-negative, non-identically equal to zero, piecewise conti-
nuous periodic function with period T. This and the following results were ob-
tained by V. A. Yakubovich [7]. 

Remark 4.5. Notice that in these criterion, the regions which are guaranteed 
stable are not convex.  

Criterion 4.6 (Yakubovich 2). Let  

( ) ( )2 2

2

1 ππ π,
nn nq t c

T TT
+

≥ ≤ <
                 

(46) 

if the following inequality holds,  

( ) ( ) ( )
2

0
d 2 1 cot

2 1
T Tcq t c t c n

n
− ≤ +

+∫
              

(47) 

then the solution of equation (45) is stable and ( )q t  belongs to the n-th zone 
of stability, 0,1,2,n =  . 

Criterion 4.7 (Yakubovich 3). Let 

( ) ( ) ( )2 2

2

1 π 1 ππ,
n nnq t c

T TT
+ +

≤ ≤ <
              

(48) 

if for some 0,1,2,n =  , we have the inequality 
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( ) ( )2
0

d π
T

q t c t c Tc n− ≤ −∫                   
(49) 

then the trivial solution of Equation (45) is stable and ( )q t  belongs to the n-th 
zone of stability.  

For Meissner equation, the criteria 0.11 and 0.12 may be rewritten just as we 
did in the criterion 0.9. Table 2 shows the sufficient conditions for stability of 
Meissner equation solutions  

From Table 2 one can notice that the n-th stability zone ( 0,1,n =  ) depends 

on the parameter c. The Yakubovich 2 criterion assumptions, 
1

2 2
n nc +
≤ <  and 

( ) ( )
π2 1 cot

1
cc n

n
ζ

 
≤ +   + 

, define parallelograms whose vertexes depends on the 

current value of c, for example, for the stability zone 1  the vertexes are: 

( ) 2 2 π, cot ,0
π 2

cc cα β
  = +  

  
; ( ) 2 2 π, cot ,0

π 2
cc cα β

  = −  
  

;  

( ) 2 2 π 2, cot , cot
π 2 π 2

c cc c c π
α β

    = +    
    

; and  

( ) 2 2 π 2 π, cot , cot
π 2 π 2

c cc c cα β
    = −    

    
. And the inequality 

2

4
nα β− ≥  de-

fine triangular sectors. If we denote each parallelogram as ( )c  and the trian-

gular sector as ( )n  then, the n-th stability zone given by Yakubovich 2 crite-
rion is  

( ) ( )
1

2 2

n
n nc

c n
+

≤ <

⊂



    

Figure 4 Shows the parallelograms defined by different values of c  and the 

triangular sector defined by the inequality 
2

4
nα β− ≥  for 1n =  stability zone.  

From the Figure 4 we notice that the stability zone obtained by the Yakubovich 

2 criterion belongs to the cone ( ) 1, | and 1
4

V α β α β α β = − ≥ + ≤ 
 

, moreover, 

by following the same procedure we can prove that each subset of n , defined 
by the Yakubovich 2 criterion, is content in the cone  

 
Table 2. Yakubovich 2 and Yakubovich 3 criteria for the Meissner equation, where 

( )2 2 πc cζ α β α β= + − + − − .  

Criteria Assumptions Conditions 

Yakubovich 2 

2

4
1

2 2

n

n nc

α β− ≥

+
≤ <

 ( ) ( )
π2 1 cot

1
cc n

n
ζ

 
≤ +   + 

 

Yakubovich 3 

( )21
4
1

2 2

n

n nc

α β
+

+ ≤

+
≤ <

 ( )2 πc c nζ ≤ −  
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Figure 4. Red continuous line represents the boundary of the stability zone obtained by 
Yakubovich 2 criterion. Parallelograms in blue discontinuous lines are defined by the in-

equalities 
1 1
2

c≤ <  and π4 cot
2
ccζ  ≤  

 
. 

 

 
Figure 5. Red continuous line represents the boundary of the stability zone obtained by 
Yakubovich 3 criterion. Parallelograms in blue discontinuous lines are defined by the in-

equalities 
1 1
2

c≤ <  and ( )2 1c cζ ≤ − . 

 

( ) ( )22 1
, | and

4 4n
nnV α β α β α β

 + = − ≥ + ≤ 
              

(50) 

By doing a similar procedure for Yakubovich 3 criterion we obtain the Figure 5.  

Notice that the cone ( ) 1, | and 1
4

V α β α β α β = − ≥ + ≤ 
 

 is inside the  

stable zone obtained with the Yakubovich 3 criterion. It can be proved that the 
cones nV  defined in (50) are inside of the stable zones (subsets of n ) ob-
tained by Yakubovich 3 criterion. Then, for the case of Meissner equation, we 
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can say that the stable zones obtained by Yakubovich 2 criterion are contained in 
the zones defined by the Yakubovich 3 criterion. This is not the same for the 
cases of Mathieu and Lyapunov equations, see Figure 6. 

Next criterion was developed by Borg [4]. An alternative proof was made in 
[14]. 

Criterion 4.8 (Borg). Consider the system (45) and let 

( )
0

1 d
T

avq q t t
T

= ∫
                       

(51) 

Suppose that for some integer n  

( )2 22 2

2 2

1 ππ
av

nn q
T T

+
< <

                    
(52) 

( ) ( )0
d 2 π , if 1,

T
av av avq t q t q T q n n− < − ≥∫           

(53) 

( ) ( ) ( )0
d 4 1 cot

2 1
T av

av av

T q
q t q t q n

n

 
− ≤ +   + 

∫
           

(54) 

Then all solutions of Equation (45) are bounded on ( ),−∞ +∞  and the cor-
responding Hamiltonian in (24) is in the stability domain n .  

Figure 6 shows the stable zones obtained by the Yakubovich 2 (red), Yakubovich  
 

 
Figure 6. Stability zones, for (a) Mathieu, (b) Meissner and (c) Lyapunov equations, obtained by Yakunovich 2 (red), Yakubovich 
3 (green) and Borg (blue) criteria. 
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3 (green) and Borg (blue) criteria for the Mathieu, Meissner and Lyapunov equ-
ations.  

It is worth to notice that Borg criterion uses almost the same statements of the 
criteria 0.11 and 0.12 but avq  is written instead of 2c  and the distance be-
tween the function ( )q t  and the constant c is divided by 2. Moreover for Ma-
thieu, Meissner and Lyapunov equations the constant avq  is equal to α , so 
Borg criterion may be rewritten as: 

The solutions of Mathieu, Meissner and Lyapunov equations belongs to the 
stability domain n  if for some integer n the inequalities  

( )22 1
4 4

nn
α

+
< <  

( ) ( )2π

0
d 2 2 π, if 1,p t t n nβ α α< − ≥∫  

( ) ( ) ( )
2π

0

πd 4 1 cot
1

p t t n
n
αβ α

 
≤ +   + 

∫  

are fulfilled. The integral ( )2π

0
dp t t∫  for Mathieu, Meissner and Lyapunov eq-

uations are equal to 4 2 , 2π  and 5.40537 respectively. 

5. Stability Criterion Based on Properties of the Sturm  
Liouville Equation 

In [13] Hochstadt proved that given the differential equation7  

( )( ) ( ) ( ) ( ) ( )0,    ,x p t y p t T p t p t p tλ+ + = + = = −

        
(55) 

may, under suitable conditions, be solved by assuming solutions of the form 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

1 1 1

2 2 2

cos
sin

sin

cos

x A t t
x A t t

x A t p t t

x A t p t t

ϕ
ϕ

λ ϕ

λ ϕ

= 
= 
= − + 
= + 





                 

(56) 

where  

( ) ( ) ( ) ( )
( ) ( )11 sin 2 , 1,2

4
n

n n
p t

t p t t n
p t

ϕ λ ϕ
λ

= + + − =
+



  

( ) ( ) ( )
( ) ( )2

1 1 1sin
2 2

p t
A t A t t

p t
ϕ

λ
= −

+



  

( ) ( ) ( )
( ) ( )2

2 2 2cos
2 2

p t
A t A t t

p t
ϕ

λ
= −

+



  

( ) ( )0 1, 0 0, 1,2n nA nϕ= = =  

notice that ϕ  could be seen as a simile of the rotation of the solutions, see sec-
tion 4. 

 

 

7These class of systems are called reversible by V. I. Arnold, see [26]. 
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We know that for the solutions of (55) to be stable the inequality 
( ) ( )1 2 2x T x T+ <  most be fulfilled. If ( ) ( )p t p t= −  it is possible to establish 

relations between 1x , 1x , 2x  and 2x  at t T=  and 1x , 1x , 2x , 2x  at  

2
Tt =  as follows 

( )

( )

( )

( ) ( )

1 1 2 1 2

1 1 1

2 2 2

2 1

2 1 1 2
2 2 2 2

2
2 2

2
2 2

T T T Tx T x x x x

T Tx T x x

T Tx T x x

x T x T

       = − = +       
       

   =    
    

    =        
= 

 

 





          

(57) 

since if ( )1x t  and ( )2x t  are linearly independent solutions of (55) then 
( )1x t T+  and ( )2x t T+  are also solutions and can be written as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

x t T x t x T x t x T

x t T x t x T x t x T

+ = +

+ = +



                
(58) 

differentiating both sides  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

x t T x t x T x t x T

x t T x t x T x t x T

+ = +

+ = +

   

                   
(59) 

setting 
2
Tt = −  and noticing that the solutions ( )1x t  and ( )2x t  are even  

and odd respectively, that is, ( ) ( )1 1x t x t= −  and ( ) ( )2 2x t x t= − − . Solving the 
equations for ( )1x T , ( )1x T , ( )2x T  and ( )2x T  we arrive to (57), see [20]. 

From (57) one can easily rewrite the stability inequality ( ) ( )1 2 2x T x T+ <  
as  

1 24 2 2
2 2
T Tx x    − <   

   


                    
(60) 

or  

1 22 4 2
2 2
T Tx x   + <   

   


                    
(61) 

The stability of the solution is then determined by the examination of the 

signs of 1 2
Tx  

 
 

, 2 2
Tx  

 
 

, 1 2
Tx  

 
 
  and 2 2

Tx  
 
 

 , and the number of zeros of 

( )1x t , ( )2x t  in the open interval 0,
2
T 

 
 

. This follows from the Sturm oscilla-

tion theorem. Moreover, if 1 2
Tx  

 
 

, 2 2
Tx  

 
 

 and 2 2
Tx  

 
 

  are positive and 

1 2
Tx  

 
 
  is negative and ( )1x t , ( )2x t  have no zeros in 0,

2
Tt  ∈ 

 
 then 1x  

and 2x  belongs to the first stability zone [27]. So, if ( )1 2 0x T ≥  and 
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( )2 2 0x T ≥  then the solutions of (55) are bounded. On the other hand, by Eq-

uation (56), if ( )1
π
2

tϕ <  and ( )2
π<
2

tϕ  at 0 2t T≤ ≤  then ( )1 0x t ≥  and 

( )2 0x t ≥  at 0 2t T≤ ≤ . In [9] it is proved that the solutions “rotation” is 
bounded by 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

2
0

2 2
0 0

11 sin 2 d
2 4

1 πd d
4 2

T
n

n

T T

p tT p t t t
p t

p t
p t t t

p t

ϕ λ ϕ
λ

λ
λ

   = + + −   +    

≤ + + ≤
+

∫

∫ ∫





      

(62) 

and we get the following 
Criterion 5.1 (Hochstadt 1). A sufficient condition for the boundedness of all 

solutions of the periodic differential equation ( ) 0x q t x+ =  is  

( )( ) ( )
( )

1
2 22

0 0

1 πd d
4 2

T T q t
q t t t

q t
+ ≤∫ ∫



                 
(63) 

It is well known that, for ( ) ( )q t p tα β= + , the transition curves are defined 
by points in the α β−  plane for which there is at least one periodic (an-
ti-periodic) solution of (55). In [13] Hochstadt shows that for periodic solutions 
of (55) the condition  

( ) 2 πn T nϕ =                         (64) 

for some positive integer n, must be satisfied. And for anti-periodic solutions the 
condition  

( ) ( )2 1 πn T nϕ = +                       (65) 

must be satisfied. 
If the solutions of (55) are stable then, the condition  

( ) ( )π 1 πnn T nϕ≤ ≤ +                      (66) 

must be satisfied. By noticing the above Hochstadt generalized criterion 13 as 
follows [10] 

Criterion 5.2 (Hochstadt 2). A sufficient condition for the boundedness of all 
solutions of the periodic differential equation ( ) 0x q t x+ =  is  

( )( ) ( )
( ) ( )( ) ( )

( ) ( )
1 1
2 2

0 0 0 0

1 1π d d d d 1 π
4 4

T T T Tq t q t
n q t t t q t t t n

q t q t
≤ − ≤ + ≤ +∫ ∫ ∫ ∫

 

 

Both criteria, Hochstadt 1 and Hochstadt 2, require the derivative of the func-

tion ( )p t , obviously the functions ( )cos t  and ( ) ( )3 cos 2
4

cos t t+  do not  

have any trouble, but the function ( )( )cossign t  does, i.e. both criteria can be 
used to obtain stability zones for Mathieu and Lyapunov equations but, we can 
not directly apply the criteria for Meissner equation. 

For the Meissner case we must use the expansion on Fourier series of  

( )( ) ( ) ( )( )
0

4sin sin 2 1
2 1 πn

sign t n t
n

∞

=

= +
+∑

             
(67) 
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instead of ( )( )cossign t . The change of the excitation function is possible since: 
if ( ),0tΦ  is the transition matrix of ( )( )( )cos 0x sign t xα β+ + =  and 
( ),0tΦ  is the transition matrix of ( )( )( )cos 0x sign t xα β+ + =  then, 

( )( ) ( )( ),0 ,0Trace T Trace TΦ = Φ . We take just the first 20 terms of the expansion. 
Figure 7 shows in red and blue the stability areas obtained applying Hoch-

stadt 1 and Hochstadt 2 criteria respectively to Mathieu, Meissner and Lyapunov 
equations  

6. Stability Criterion Based on Shi Approximation 

In [12] the authors gave an approximation for the discriminant associated to the 
Equation (2). This approximation was obtained by rewriting Equation (2) as: 

( ) ( )
( )

( )
( )

1 1

22 2

0 1 0

2 2

x x
q t q t

q t xx x
q t q t

λ

   
      = +      − −         



 



            

(68) 

where ( )q t  is assumed to be positive and differentiable for all t, then it is  
 

 
Figure 7. Stability zones obtained, for (a) Mathieu, (b) Meissner and (c) Lyapunov equations, by Hochstadt 1 (green) and Hoch-
stadt 2 (blue) criteria. 
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proved that the system 

( ) ( )
( )

1 1

2 2

0 1

2

y y
q t

q ty y
q t

λ

 
    =    −     







                  

(69) 

can be solved and its state transition matrix is  

( )
( )( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( )( )

1cos sin
0

sin cos
0

w t w t
w

X t
t

w t w t w t

φ

φ
φ

φ

 Φ Φ 
 =  
− Φ Φ 
            

(70) 

where w λ= , ( )q tφ =  and ( ) ( )
0

d
t

t φ τ τΦ = ∫ . Then the solution of (68), 

with ( ) ( ) [ ]1 2 10 200 0x x x x′ ′=   , has the form 

( ) ( ) ( ) ( )
( ) ( )

101 1
0

2202

0
d

2

txx
qX t X t X

xxx
q
ττ τ

τ
τ

−

 
    = +    −      

∫ 

        

(71) 

suppose that 1

2

x
x
 
 
 

 and 1

2

x
x
 
 
 

 are solutions of (68) and they are subject to the 

initial conditions 
( )
( )

1

2

0 1
0 0

x
x
   

=   
  

, 
( )
( )

1

2

0 0
0 1

x
x
   

=   
  

 then the discriminant (2) is  

( ) ( ) ( )1 2A x T x Tλ = +  and one can obtain ( )2A λ  by means of successive ap-
proximations. For details see [12]. 

The approximation given in [12] is as follows 

( ) ( )

( ) ( )
( )

( )

1 2 1

0

2
1 2 2 2 14 1 10 0 0

1

0
1

2cos d

1 cos d d
2

2cos d

n

T

T t t n i
n nn i

n i

T
n

n

A q t t

q t
t t t t t

q t

q t t

λ λ

ψ

λ

−
∞

− =
=

∞

=

=

+

= + ∆

∫

∑ ∏∫ ∫ ∫

∑∫



  

   

(72) 

where 

( ) ( ) ( ) ( )

( )

1 3

2 4

2 1

2

1 2 2 0
d d d

dn

n

T t t
n t t

t

t

t t t q s s q s s q s s

q s s

ψ λ λ λ

λ−

= − −

− −

∫ ∫ ∫

∫





 

Following [11] and noticing that  

( ) ( ) ( ) ( )( )1 1
1 2 10 0 0 0

1d d d
!

k
kT t t T

k kf t f t f t t t f t t
k

− =∫ ∫ ∫ ∫  

       
(73) 

and  

( )
2

1
2 2

2 !

n
x x

n

x e e
n

∞
−

=

= + −∑
                    

(74) 

the second term of the right hand side of (72) is  
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4 4

1
2

v v

n
n

e e
∞ −

=

∆ ≤ + −∑
                     

(75) 

where  

( )
( )0

d
T q t

t
q t

ν ∫




                        
(76) 

then 

( ) ( ) 4 4
0

2 cos d 2
v v

T
A q t t e eλ λ

−
≤ + + −∫

             
(77) 

for the solutions of (2) to be stable the inequality  

( ) 4 4
0

2 cos d 2 2
v v

T
q t t e eλ

−
+ + − <∫

               
(78) 

must be fulfilled. 
From (78) it is not so hard to prove the next 

Criterion 6.1 (Xu). Suppose π

0

π
d

π
π

Tq
Tv

Tq

τ
τ

τ

 
 
 =
 
 
 

∫


 and  

( )
( )

( ) ( )
( )

2 2
1 1

0 0

0 0

π cos 1 π cos
,

d d

0,1,2,

T T

n n

q t t q t t

n

ϕ ϕ
λ

− −    + + −    ∈         
=

∫ ∫
          

(79) 

where ( )4 4
0

1 4
2

v ve eϕ = − − . Then (2) is stable.  

Xu criterion, as the Hochstadt 1 and Hochstadt 2 criteria, needs the derivative 
of the function ( )q t . In order to avoid troubles we will do the same as in the 
previous section, i.e. take the first 20 elements of the expansion of ( )( )sinsign t  
and then substitute them instead of ( )( )cossign t . 

Applying Xu criterion to Mathieu, Meissner and Lyapunov equations we ob-
tain the Figure 8.  

There is a vast number of sufficient conditions for the stability of periodic dif-
ferential equations, we have just mentioned and explained some of them. For 
more stability criteria see for example: [4] where Starzhinskii not only collect 
sufficient stability criteria for Equation (1) but he consider second order periodic 
differential equations with dissipation, n-th order systems and some particular 
cases of the vector equation ( ) 0y P t yµ+ = ; In [[28], Chapter 2 § 4.3] some 
conditions for stability of solutions of (1) that belongs to the first stability zone 
are presented and some general stability criteria are described; And in [[14], 
Chapters 7 and 8] Yakubovich and Starshinskii, in their outstanding monograph 
on Linear differential equations with periodic coefficients, they presented and 
proved some stability criteria starting with the Lyapunov approach (approxima-
tion of the characteristic constant), and doing a deep analysis on canonical  
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Figure 8. Stability zones obtained by Xu criterion for a) Mathieu b) Meissner and c) Lyapunov equations. 
 

(Hamiltonian) systems. 

7. Conclusions 

We have reviewed some of the most known stability criteria for second order 
differential equations; these criteria were obtained by four different approaches; 
by an approximation of the discriminant made by Lyapunov; by properties of 
canonical (Hamiltonian) systems; by Sturm-Liouville equation properties and by 
a discriminant approximation due to Shi. We have given an easy explanation of 
each approach. 

From the figures of the present work we can see, by simple inspection, that the 
best criterion among the ones presented is Hochstadt 2 (criterion 5.2) which is 
based on some properties of the solutions of the Sturm-Liouville equation and 
the rotation of the solutions, the second best is Xu’s criterion which is based on 
the approximation of the discriminant of the Hill’s equation made by Shi, and the 
discriminant approximation was obtained by means of successive approximations. 

We have numerically calculated the percentage of the stability zones, in the 
ranges [ ]0,3α ∈  and [ ]0,1.5β ∈ , for each of the equations: Mathieu, 
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( )( )2 cos 0x t xα β+ + = ;  M e i s s n e r ,  ( )( )( )cos 0x sign t xα β+ + = ;  a n d  

Lyapunov, ( ) ( )32 3cos cos 2 0
25 4

x t t xα β
  + + + =     

 . See Table 3. 

Table 4 shows us the percentage of the stability zone obtained by using each 
sufficient condition for stability. Being 100% the whole stability zone of each 
stability chart in the ranges [ ]0,3α ∈  and [ ]0,1.5β ∈ .  

From Table 4 we can see that the best criterion among the criteria for obtain-
ing the first stability zone of Mathieu, Meissner and Lyapunov equations is Lya-
punov 2. Some others conditions that assure the solutions of (1) are stable and 
belong to the first zone of stability can be found in [[28], pag. 61]. 

The best two criteria for stability of the solution for the whole α β−  plane 
( [ ]0,3α ∈  and [ ]0,1.5β ∈ ) are Hochstadt 2 and Xu, both of them are based on 
an approximation of the discriminant of the Hill equation, the former approxi-
mation is based on 2 proposed linear independent solutions of the Sturm-Liouville 
problem, see section 5, and the later is obtained by means of successive approx-
imations, see section 6. 

Perturbation methods, such as strained parameters (Lindstedt-Poincare me-
thod) and multiple scales methods, are frequently used for analysing the stability 
of the periodic differential equations. They are based on the assumption that the 
variable-coefficient terms are small in some sense. The stability boundaries asso-
ciated to a Hill equation may be determined by the strained parameters method, 
that is, assuming that 1β  , and then seeking the value of α  such that the 
solutions be T or 2T periodic. The general solution and the coefficient α  are 
written in terms of powers of β  (perturbation expansion)  

 
Table 3. Percentage of stable area obtained by numerical calculation in the plane α β− , 

[ ] [ ]0,3 , 0,1.5 .α β∈ ∈  

Equation Mathieu Meissner Lyapunov 

Stability area (%) 87 84.65 84.31 

 
Table 4. Percentage of stability zone obtained by applying each criterion on the Mathieu, 
Meissner and Lyapunov equation. 

Criterion Mathieu Meissner Lyapunov Average 

Lyapunov 1 0.39 0.4 0.4 0.3967 

Lyapunov 2 0.98 0.99 0.98 0.9833 

Yakubovich 1 67.18 68.82 71.37 69.12 

Yakubovich 2 44.63 58.58 59.38 54.19 

Yakubovich 3 54.28 68.34 43.51 55.37 

Borg 66.52 63.04 69.44 66.33 

Hochstadt 1 0.85 0.56 0.8 0.73 

Hochstadt 2 82.24 71.31 80.87 78.14 

Xu 81.46 70.25 79.69 77.13 
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( ) ( ) ( ) ( )2
0 1 2,x t x t x t x tβ β β= + + +               (80) 

2
0 1 2α α βα β α= + + +                    (81) 

then, the series (80) and (81) are substituted into the Hill equation and by 
grouping terms of like powers of β , one obtains a set of recursive differential 
equations. The initial condition of α , i.e. 0α , is the value of α  where the  

Arnold tongues rise, and depends on the excitation function period, 
2

0
πn
T

α  =  
 

,  

0,1,2,n =  . The accuracy of the method depends on how many elements of the 
series (80) and (81) are obtained. Notice that the same procedure must be done 
for each transition curve, see [29]. 

In [30] the calculation of the first transition curves of the classical form of the 
Mathieu equation  

( )( )cos 0x tα β+ + =

                     
(82) 

are obtained as 

( )2 31
2

Oα β β= − +   Transition curve associated to the 0th tongue 

( )2 31 1 1
4 2 8

Oα β β β= ± − +   Transition curves associated to the 1st tongue 

( )2 351
12

Oα β β= + +   Transition curve associated to the 2th tongue 

( )2 311
12

Oα β β= − +   Transition curve associated to the 2th tongu 

Figure 9(a) shows the transition curves, associated to the first tongue, ob-
tained by the strained parameters method (Lindstedt-Poincare method) and the 
actual one. Figures 9(b)-(e) show the stability zones obtained by Yakubovich 1, 
Hochstadt 2, Borg and Xu criteria respectively, in the ranges [ ]0,1.5α ∈  and 

[ ]0,0.05β ∈ . 
Notice that the stability areas found with the strained parameters method are 

larger than the ones obtained with the sufficient stability criteria (Hochstadt 2, 
Xu, Yakubovich 1 and Borg). Table 5 shows the percentage of the stability zones 
obtained by using the four stability criteria and the strained parameters method 
on the classic Mathieu equation, being 100% the whole stability area in 

[ ]0,1.5α ∈  and [ ]0,0.05β ∈ .  
Even though the stability areas found with strained parameters method are 

larger than the ones obtained with the stability criteria, for the Mathieu equation 
case (82), the complexities of the method and the set of differential equations 
that has to be solved, for obtaining the stable zones, make the strained parame-
ters method less suitable than the simplicity of the criteria statements for the 
stability analysis of periodic differential equations. Besides, we must re-
member that the strained parameters method has the limitation that it just  
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Figure 9. Comparison between Strained parameters method and sufficient stability criteria. (a) Unstable zone (UZ) vs. Strained 
parameters stability zone (SPSZ), (b) stable zone obtained by Yakubovich 1 criterion, (c) stable zone obtained by Hochstadt 2 cri-
terion, (d) stable zone obtained by Borg criterion, (e) stable zone obtained by Xu criterion. TCSP = Transition curves obtained by 
strained parameters, CSZ = Criterion stable zone. 
 
Table 5. Percentage of stability zones obtained by four stability criteria and the strained parameters method in [ ]0,1.5 ,α ∈

[ ]0,0.05β ∈  and [ ] [ ]0,1.5 , 0, 0.1α β∈ ∈ . 

Criterion Classic Mathieu equation. 

 [ ] [ ]0,1.5 , 0,0.05α β∈ ∈  [ ] [ ]0,1.5 , 0,0.1α β∈ ∈  

Strained parameters 99.86 99.89 

Yakubovich 1 96.95 94.53 

Borg 96.79 93.60 

Hochstadt 2 96.28 92.42 

Xu 96.19 92.01 
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work for small values of β , the sufficient stability criteria, here presented, do 
not have that limitation. 
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Appendix 
A. 

Let ( )f t  and ( )g t  be two linear independent solutions of  

( ) ( ) ( ) ( )0, , 0,x q t x q t T q t q t tλ+ = + = > ∀

           (83) 

subject to the initial condition  

( ) ( )
( ) ( )
0 1 0 0

0 0 0 1

f g

f g

= =

′ ′= =                      
(84) 

The approximation of the characteristic constant ( ) ( ) ( )1
2

A f T g Tλ ′= +     

associated to the periodic differential Equation (83), consists in write ( )A λ  
and the linear independent solutions ( )f t  and ( )g t  as alternating series of 
powers of λ  

( ) ( )2
0 1 2 1 n n

nA A A A Aλ λ λ λ= − + + + − +   

( ) ( ) ( ) ( )2
0 1 2f t f t f t f tλ λ= − + −                (85) 

( ) ( ) ( ) ( )2
0 1 2g t g t g t g tλ λ= − + −  

where 

( ) ( )( )1 , 0,1,2,
2k k kA f T g T k= + =

  

( ) ( ) ( )1
1 2 1 2 20 0

d d
t t

k kf t t q t f t t−= ∫ ∫                  
(86) 

( ) ( ) ( )1
1 2 1 2 20 0

d d
t t

k kg t t q t g t t−= ∫ ∫  

with ( )0 1f t =  and ( )0g t t= . And then solve the recurrence system of equa-
tions. 

( )0 1 0
1, d

2
TTA A q t t= = ∫  

( )( ) ( ) ( )1
2 1 1 2 1 2 1 2 20 0

1 d d
2

T t
A t T t t t t q t q t t= − + −∫ ∫  

                              (87) 

( )( ) ( ) ( ) ( )1 1
1 2 1 1 2 1 10 0 0

1 d d d
2

nT t t
n n n n n nA t t T t t t t t t q t q t t−

−= − + − − ⋅∫ ∫ ∫    

In [23] Lyapunov studied in depth the properties of the approximation for 
( )A λ  such as the convergence of the series and the monotonic decrease of the 

series coefficients. One can prove that for 1n >  the coefficients , 1nA n >  sa-
tisfy the inequality  

1 1 0n nA A nA− − >                        (88) 

this can be demonstrated following [5]. By the definitions of the coefficients nA  
we can restate (88) as  

( ) ( )( ) ( ) ( ) ( )( )1 1 0
d 2 0

t
n n nf t g t t q t t n f t g t− −+ − + >∫ 

         
(89) 
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for 2n > . Defining ( ) ( )( ) ( ) ( ) ( )( )1 1 0
d 2

t
n n n nS f t g t t q t t n f t g t− −+ − +∫ 
  and 

noticing that it can be rewritten as  

( )( )0
d

t
n n nS F q t t= + Φ∫                     

(90) 

where 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )
1 1 10 0

2 1 1 10

d d 2

d 2

t t
n n n n n

t
n n n n n

F tf t q t t f t g t q t t nf t

tg t q t t f t g t ng t

− − −

− − − −

= + + −

Φ = + + −

∫ ∫

∫

 





      

(91) 

then (89) is fulfilled if all the coefficients nF  and nΦ  are positive, 0nF >  and 
0nΦ > . Rewriting nF  and nΦ  we have 

( ) ( ) ( )( )
( ) ( )( )
10 0

20

2 d d

2 d

t t
n n n

t
n n n

F f t q t t q t u t

q t tg t tν

−

−

= +

Φ = +

∫ ∫

∫





              

(92) 

where 

( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )

2 2 10

1 2 10 0

2 d

2 2 d d

t
n n n n

t t
n n n n

u q t g t tf t F t

f t g t q t t q t t tν

− − −

− − −

= + +

= + + Φ

∫

∫ ∫



        

(93) 

since the excitation function ( )q t  is positive for all t, one can notice that 
( ) 0nf t > , ( ) 0ng t > , ( ) 0nf t >  and ( ) 0ng t >  0t∀ > , these follow from de-

finition. So, nu  and nv  are positive which implies that nF  and nΦ  are posi-
tive and the inequality (89) is fulfilled. For details of the proof see [5]. 

B. A Brief Introduction to Hamiltonian System Solutions 

Consider a second order differential equation in canonical form 

( )x JH t x=                          (94) 

where 1

2

x
x

x
 

=  
 

, ( )H t  is a symmetric real periodic matrix ( ) ( )H t T H t+ =  

( )TH t=  and J  is the skew symmetric matrix 
0 1
1 0

J  
=  − 

. 

The state transition matrix of (94) may be expressed as  

( ) ( )
( ) 2

,0

0,0

tKt F t e

I

Φ =

Φ =                       
(95) 

where ( ) ( )F t T F t+ =  or ( ) ( )F t T F t+ = − , ( )( )det 1F t = , ( )F t  is a real 
matrix function, and K is a real matrix with ( ) 0Tr K =  [14]. The fact that K is a 
real matrix follows from the eigenvalues properties of the monodromy matrix M, 
specifically on the multipliers position with respect to the unit circle. For the 
multipliers of M there exist only three possibilities; a) both eigenvalues are real, 
positive and reciprocal; b) both eigenvalues real negative and reciprocal; or c) 
the eigenvalues are complex conjugated numbers on the unit circle. In the first 
case, there exists a real matrix ( )ln M , in the second a real matrix ( )ln M−  
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and in the third case both ( )ln M  and ( )ln M−  are real matrices. So K could 
be defined as  

( )lnK M= ±                         (96) 

where the sign ±  is chosen so that K be real. 
Remembering that, for periodic systems, ( ) ( ) ( ),0 , ,0t T t T T TΦ + = Φ + Φ =

( ) ( ),0 ,0t TΦ Φ  and substituting (95) into ( ),0t TΦ +  we have 

( ) ( ) ( ) ( ) ( ) ( )t T K t T KtK TKF t T e F t e F T e F t e+ ++ = =           (97) 

since ( ) 2
TKF T Me I−= = . Then ( ) ( )F t T F t+ = ±  where the sign is the same 

as the one in the definition of K. From (95) one can easily see that ( )( )det F t =

( )( ) ( )det ,0 Trace K ttKt e e−−Φ = . Since ( )( ) ( )( )det detF t T F t+ =  and ( )Tr K  is a 
real numbers, we can infer that that ( ) 0Tr K =  and ( )( )det 1F t = . 

It follows from matrix similarity that the K matrix may be brought by a simi-
larity transformation to one of following forms: 

10
(a)

0
K S S

λ
λ

− 
=  − 

 

10
(b)

0 0
K S S

ε − 
=  

 
 

10
(c)

0
K S S

φ
φ

−− 
=  

 
 

where ,λ ε  and φ  are real numbers and S is a real non-singular matrix. Fol-
lowing the nomenclature of [14], let  , Π  and   be subsets of all admissi-
ble matrix K. We will say that the matrix K ∈  if it has the form (a), K ∈Π  
if it has the form (b), and K ∈  if it has the form (c). 

From the Floquet factorization (95) one can say that the stability of the solu-
tions of (94) depends on the exponential matrix KTe , and therefore on K i. e. if 
K ∈  then (94) has one stable solution and one unstable solution (the charac-
teristic multipliers are real and distinct from 1± ). If K ∈Π  with 0≠  then 
(94) has one periodic solution ( )1x t  and one unstable solution ( )2tx t , if 

0=  both solutions are stable and periodic (the characteristic multipliers are 
1± ). And, if K ∈  then both solutions, of (94), are bounded (the characteris-

tic multipliers are complex, lie on the unit circle and are distinct from 1± ). All 
the latter properties are summarized in the Table S1.  

Let  Ω  be the set of real continuous function matrices ( )F t  with 
( ) ( )F t T F t+ = ±  and ( )( )det 1F t = . Now, let ( )x F t a=  be a solution of 

Hamiltonian system (94), where a is a non-zero arbitrary vector and let xϕ  de-
note the rotation of the solution x in time T, since ( ) 2F T I= ±  it follows that 

πx nϕ = , where n is even if ( ) ( )F T t F t+ =  and n is odd if ( ) ( )F T t F t+ = − . 
Let nΩ  denote the set of matrices ( )F t  such that the rotation over a period T 
is πnϕ = , nn

∞

=−∞
Ω = Ω


, each of these nΩ  are disjoint sets [14]. 
Let L  be the set of all symmetric matrices ( )H t  in (94). As we know each 

matrix ( )H t ∈L  determines a unique state transition matrix ( ),0tΦ . By (95)  
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Table S1. Relation between the subsets  , Π  and   and the stability of canonical 
system solutions (24),  , λ  and φ  are real positive constants. 

K has the 
form K ∈  µ  tKe =  

( )x t  and 

( )y t  

(a)   

 

10
0

t

t

e
S S

e

λ

λ
−

−

 
 
 

 Unstable 

(b) Π  

 

11
0 1

t
S S − 
 
 


 Unstable 

(c)   

 

( ) ( )
( ) ( )

1cos sin
sin cos

t t
S S

t t
φ φ
φ φ

− 
 − 

 Stable 

 
the matrix ( ),0tΦ  determines the pair ( )F t , K  where ( )F t ∈Ω  and 
K ∈ Π   . So one can say that ( )= Ω× Π L   . As we have seen 

nn
∞

=−∞
Ω = Ω


 then  

( )n n n
n∀

= Π 



L  
                     

(98) 

where  

n n= Ω ×   

n nΠ = Ω ×Π                         (99) 

n n= Ω ×   

In words, the set L  is divided into the subsets n , nΠ  and n  where 
the matrices K and ( )F t , which are defined by the state transition matrix of the 
Hamiltonian system (94), belong to one of the sets  , Π  or   and 
( ) nF t ∈Ω . We say that ( ) nH t ∈  if and only if ( ),0 ntΦ ∈  and so on. 
Let ( ) nH t ∈  then ( ) nF t ∈Ω  and K ∈ , let v+  and v−  be eigenvec-

tors of K such that 
,     Kv v Kv vλ λ+ + − −= = −  

,    tK t tK te v e v e v e vλ λ−
+ + − −= =  

we can notice that the rotation of the two linear independent solutions of (94), 
( )1

tx e F t vλ
+=  and ( )2

tx e F t vλ−
−= , is 

1 2
πx x nϕ ϕ= = , these follows from the 

fact that the rotation of a solution doesn’t depend on the eigenvectors v+  and 
v−  but on the matrix ( )F t . For any other solution the rotation is either 

( )π 1 πn nϕ< < +  or ( )1 π πn nϕ− < <  (See [14] § VIII. 1.9, lemma I and II). 
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Similarly, one can prove that if ( ) nH t ∈  then the rotation ϕ  of all the 
solutions of (94) will be ( )π 1 πn nϕ< < + . The sketch of the proof is as follows, 
by assumption ( ) nF t ∈Ω  and K ∈ , from (95) we know that any solution of 
(94) can be written as ( )x F t y=  where ( ) ( )0tKy t e y= , from form (c) it fol-
lows 

( ) ( ) ( )
( ) ( ) ( )1cos sin π0 , 0

sin cos
t t

y t S S y
t t T
φ φ

φ
φ φ

− − 
= < < 

          
(100) 

with ( )1 0b S y−=  and ( )det 1S = . Thus ( )1S y t−  moves uniformly in a circle, 
describing and angle Tφ  in time T . Since 0 πTφ< <  then 0 πyϕ< <  and 
finally ( )π 1 πn nϕ< < + . 
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