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Abstract 
It has been suggested that sick sinus syndrome, which is due to the dysfunc-
tion of the sinus node, may result from the sparser gap junctions and/or lower 
intrinsic frequencies of pacemaker cells that occur with aging. Hence, in this 
paper, the synchronization mechanism of pacemaker cells that lie in the sinus 
node of the heart is examined using a modified Kuramoto phase model. Al-
though each element always interacts with all the others in the Kuramoto 
phase model, in the proposed model, each element interacts only with the 
neighbors over a certain time (called the interaction time) during Phase 4 of 
the action potential. The pacemaker cell elements are arranged on a square 
lattice, and each element connects with the elements surrounding it. The re-
sults indicate that the diversity of intrinsic frequencies of pacemaker cells may 
be necessary for synchronization. Moreover, increasing the proportion of 
invalid connections causes the elements to take more time to synchronize un-
til eventually they do not synchronize at all, and decreasing the intrinsic fre-
quencies of the elements prevents them from synchronizing. Probably these 
elucidate the cause of sick sinus syndrome. 
 

Keywords 
Synchronization, Sick Sinus Syndrome, Oscillator, Overdrive Suppression 
Test, Gap Junction 

 

1. Introduction 

Synchronization is a universal phenomenon associated with oscillations. The 
Moon revolves around the Earth with the same period as that of its rotation. The 
tide-producing force from the Earth to the Moon causes the synchronization of 
the revolution and rotation of the Moon. Moreover, the spontaneous synchro-
nization of firefly lights is one of several extremely fascinating exhibitions that 
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occur in nature. Some mathematical models have been proposed to simulate this 
phenomenon [1]. Each firefly is assumed to be a light-emitting oscillator that 
generates a limit cycle. Another example is the synchronization of a series of Jo-
sephson junctions, each element of which interacts only with its close neighbors 
[2]. Similarly, each pacemaker cell of the sinoatrial node (a group of pacemaker 
cells in the wall of the right atrium of the heart), which is regarded as an electric-
al oscillator generating a limit cycle, is loosely coupled with its neighboring pa-
cemaker cells so that those cells synchronize. The electrical impulse current of a 
single pacemaker cell is not sufficient to travel through the impulse-conducting 
system, so the ventricles of the heart do not contract. In contrast, synchronized 
pacemaker cells generate an impulse with sufficiently high current to travel 
through the system so that the ventricles contract and pump out blood normally. 
Hence, the failure of this synchronization is presumed to cause sinoatrial arrest 
[3]. This interruption of the cardiac cycle generally lasts a few seconds before the 
atrioventricular junction lying in the middle of the impulse-conducting system 
begins pacing and restores slower ventricular contractions. Sinoatrial arrest is a 
part of sick sinus syndrome, the symptoms of which include fainting, vertigo, 
and weakness. Gap junctions in the sinoatrial node have recently been demon-
strated to be a key player in the electrical coupling underlying synchronization 
[4]. Because gap junctions have low resistance, local circuit currents propagate 
over short distances. Jalife proposed a very probable hypothesis called the dem-
ocratic consensus hypothesis, which is based on an experiment using rabbit si-
noatrial pacemaker cells [5]. This hypothesis states that although the individual 
pacemaker cells in the sinoatrial node beat at slightly different intrinsic frequen-
cies, they interact mutually by electrical coupling to fire at a “consensus” rate. It 
has been suggested that when two independent groups of fast and slow pace-
maker cells are connected through low-resistance junctions, the period resulting 
from their mutual entrainment should be a function of their respective intrinsic 
frequencies, their phase relations, and the degree of electrical coupling. Moreo-
ver, Jalife et al. elucidated the mechanisms of sinoatrial pacemaker synchroniza-
tion using a computer simulation of 81 to 225 coupled cells [6]. Pacemaker ac-
tivity has been simulated using differential equations that describe transmem-
brane ionic currents. These results support the hypothesis that sinoatrial node 
synchronization occurs through a “democratic” process resulting from the 
phase-dependent interactions of thousands of pacemakers. 

The Kuramoto phase model has been used to simulate the synchronization of 
firefly signals [7]. Although this firefly signal model is simple, the respective 
frequency, phase relation, and degree of coupling are included as variables in the 
model. The responsiveness of pacemaker cells is rather different from that of 
fireflies in that the action potential of each pacemaker cell has a refractory period, 
during which it does not respond to external stimuli at all. However, a pacemak-
er cell can respond to external stimuli during Phase 4 of the action potential 
(described in detail below). Jalife reported various patterns of interactions be-
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tween fast and slow pacemaker cells, that is, simple harmonic (e.g., 1:1, 2:1, and 
1:2) and more complex (e.g., 3:2 and 5:4) ratios [5]. Because such complex phe-
nomena have not been reported in the observation of firefly signals, we speculate 
that these various ratios may be due to the refractory period. Specific ionic cur-
rents, over time, slowly depolarize Phase 4 for pacemaking. Hence, it is assumed 
that each pacemaker cell is influenced by its neighbors, the phases of which are 
within a certain range of its phase. This range is called the interaction time. We 
modified the Kuramoto phase model by incorporating a variable that represents 
the period of Phase 4. In the modified Kuramoto phase model, for each pace-
maker cell, the intrinsic frequency, Phase 4 period, phase relation, and degree of 
coupling between it and the neighboring pacemaker cells can be modulated in-
dependently as variables to observe various patterns. The differences between 
the Kuramoto phase model and the proposed model are that although each ele-
ment always interacts with all the others in the former, each element interacts 
only with its neighbors during the Phase 4 period in the latter. We examine how 
the synchronization of pacemaker cells depends on those variables. Such an ex-
amination is presumed to be rather difficult using differential equations de-
scribing transmembrane ionic currents. 

The repetitive high-frequency stimulation test of the sinoatrial node (called 
the overdrive suppression test) is used to examine its function clinically. The si-
noatrial node comes to a standstill immediately after the repetitive stimulation, 
then resumes a regular rhythm after a certain pause (called the sinus node re-
covery time). The length of this pause is presumed to reflect the degree of dys-
function of the sinoatrial node [8] [9]. Although some mechanisms of this dys-
function have been described [10], the factor that determines the length of the 
sinus node recovery time is unknown. One of the purposes of the present study 
is to infer that factor using the modified Kuramoto phase model. Additionally, 
an unexpected finding is that slightly different intrinsic frequencies of the pace-
maker cell elements promote their synchronization, although it was expected 
that the same frequencies would make those elements synchronize more easily. 

2. Model 

The simplest model consists of two connected elements, as illustrated in Figure 
1(a). Figure 1(b) shows the minimum square lattice in which there is at least 
one element that is unconnected to each element. For example, the first element 
does not connect with the fourth element. Figure 1(c) shows a square lattice 
consisting of nine elements, which is the minimum lattice in which each element 
has four connections. For example, the elements are numbered in Figure 1(c): 
the element on the left corner of the first row is element 1, the element of the 
right corner of the first row is element 3, and the element of the right corner of 
the last row is element 9. Every element interacts with four elements: every ele-
ment inside the lattice connects with its immediate neighbors, and everyone on 
the lattice sides connects with its immediate neighbors and elements on the op- 
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Figure 1. Arrangement of coupling resistances between simulated pacemaker cells in 
two-dimensional square lattices. The resistances are expressed as arrows. (a) 2 elements; 
(b) 2 × 2 elements; and (c) 3 × 3 elements. Every element interacts with four elements, 
and (c) shows that every element on the sides connects with its immediate neighbors and 
elements on the opposite side. 
 
posite side. Because every element is equivalent to the others with respect to po-
sition, no boundary condition is necessary. Hence, this two-dimensional lattice 
is assumed to be the surface of a three-dimensional torus made by connecting 
the top side with the bottom and the left side with the right. The elements di-
rectly connected in this manner are regarded as neighbors. In the modified Ku-
ramoto phase model, the dynamics of the i-th cell ( 1,2,3, ,i n=  ) is represented 
as follows: 
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In this equation, n is the total number of the elements of the lattice, θi is the 
phase of the i-th element, fi is the intrinsic frequency of the i-th element, N is the 
number of couplings with the i-th element (N = 1 in Figure 1(a), 2 in Figure 
1(b), and 4 in Figure 1(c)), and 

miiK  is the degree of interaction between the 
i-th and im-th elements. For example, im for the first element of Figure 1(c) are 2, 
3, 4, and 7, and im for the fifth element is 2, 4, 6, and 8. The rem function is the 
remainder operation: ( )rem ,r a b=  returns the remainder after the division of 
a by b and the result has the same sign as dividend a. For example, 

( )rem 5π,2π π− = − . Function y = sign(x) returns 1 if x > 0, 0 if x = 0, and −1 if x 
< 0. Moreover, Gi and Fi are coefficients between 0 and 2. The phase of every 
cycle is 2π. 

The first line of the equation is just the Kuramoto phase model for the inte-
ractions between each element and its neighbors. The second line returns 1 if the 
difference between θi and 

mi
θ , for any integer multiple of 2π, is less than π × Gi, 

0 if it is larger than π × Gi, and 1/2 if it is equal to π × Gi. However, it is assumed 
never to equal to π × Gi exactly. Hence, the second line means that only if the 
difference between the phase of the i-th element and that of any neighbor is 
within π × Gi is the i-th element influenced by that neighbor (Figure 2). When  
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Figure 2. Schema of the action potentials of i-thelement and its im-thneighbor. Red line, 
refractory period; Blue line, Phase 4.θi, phase of the i-th element (black circle); 

mi
θ , 

phase of the im-th neighbor (red circle). A1, rem(θi, 2π) —π × Gi; A2, rem(θi, 2π) + π × Gi. 
 

( )rem ,2π 0iθ ≥ , the third line returns 1 if ( )rem ,2πiθ  is less than π × Hi, 0 if it 
is larger than π × Hi, and 1/2 if it is equal to π × Hi. When ( )rem ,2π 0iθ < , the 
third line returns 1 if ( )rem ,2π 2πiθ +  is less than π × Hi, 0 if it is larger than π 
× Hi, and 1/2 if it is equal to π × Hi. It is also assumed neither to be exactly equal 
to π × Hi nor to be < 0. Thus, the third line means that only if the phase of the 
i-th element, for any integer multiple of 2π, is between 0 and π × Hi is the i-th 
element influenced by the neighbors. Figure 2 shows trains of action potentials 
for two pacemaker cells. The action potential mainly consists of Phases 0, 3, and 
4, because Phases 1 and 2 are small. Phase 0 is the period of rapid depolarization 
caused by a fast inflow of calcium ions and Phase 3 consists of repolarization 
caused by a fast outflow of potassium ions. These periods make up the refractory 
period. Phase 4 is the period during which the inflow of sodium ions begins, and 
thereafter, the inflow of calcium ion continues before firing beyond the thre-
shold [11]. Because the i-th element interacts with the neighbors during Phase 4 
and the ionic current through the gap junctions depends on the phase, it is pre-
sumed that elements interact with each other when the neighbors are in or near 
Phase 4. Using π × Gi, any element influencing the i-th element is restricted to 
neighbors in or near Phase 4 correctly from ( )rem ,2π πi iGθ − ×  to 

( )rem ,2π πi iGθ + × . The interaction time is defined as π 2iG× × . This is the 
interval between A1 and A2 in Figure 2. 
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The assumptions are summarized as follows: 
Assumption 1: The elements are independent oscillators. In the Kuramoto 

phase model, each element interacts with all the others. In contrast, in the pro-
posed model, each element interacts only with the connecting elements (neigh-
bors). 

Assumption 2: The frequency of each element varies marginally around a 
certain common frequency. Hence, Fi, the intrinsic frequency of the i-th element 
( 1,2,3, ,i n=  ), is the sum of a common frequency Fc and random frequency 

ir
F . Common frequency Fc is fixed as 0.4 arbitrarily. The random frequency is 
given individually and is generated from a uniform distribution of random 
numbers between 0 and 0.1. Then, 

ir
F  is denoted as (0, 0.1) (Table 1, Table 2). 

Hence, 0.4
ii rF F= + . 

Assumption 3: The degree of interaction between two neighbors varies mar-
ginally around a certain common degree. Hence, 

miiK , the degree of interaction 
between the i-th element and its im-th neighbor, is the sum of a common degree 
Kc and random degree 

imrK . The random degree is given individually and is 
generated from a uniform distribution of random numbers between 0 and 1. 
Then, 

imrK  is denoted as (0, 1) (all Tables). Hence,    
m imii c irK K K= + . 

Assumption 4: The duration of Phase 4 is represented as π×Hi, during which 
the i-th element interacts with the neighbors. The value of Hi is from 0 to 1. For 
the sake of model simplicity, it is the same for all elements. Hence, all Hi are ex-
pressed as H. The phase of one cycle is 2π. Because the duration of Phase 4 (=π × 
H) is approximately one half of one cycle [11], H is assumed to be 1. The start 
 

Table 1. Effects of Fr, Gc, and lattice size on synchronization (SYNC). 

      2 Elements 9 Elements 16 Elements 36 Elements 100 Elements 121 Elements 144 Elements 

Fc Fr Gc Gr Kc Kr SYNC (cy) SYNC (cy) SYNC (cy) SYNC (cy) SYNC (cy) SYNC (cy) SYNC (cy) 

0.4 0 0.2 (0, 0.2) 1 (0, 1) none none none none none none or 12.5 (u) none or 12.5 (u) 

0.4 (0, 0.1) 0.2 (0, 0.2) 1 (0, 1) none 14 14 14 14 14 13.5 

0.4 0 0.8 (0, 0.2) 1 (0, 1) none 13 13 13 12.8 12.8 12.8 

0.4 (0, 0.1) 0.8 (0, 0.2) 1 (0, 1) 14 14.5 14 14 14 13.5 13.5 

cy: cycles/2000 time steps; u: unstable. 

 
Table 2. Effects of lower common frequency on synchronization (SYNC). 

       144 Elements 

Fc Fr Kc Kr %Kzero Gc Gr SYNC (cy) 

0.4 (0, 0.1) 2 (0, 1) 10 0.2 (0, 0.2) 13.5 

0.3 (0, 0.1) 2 (0, 1) 10 0.2 (0, 0.2) 10.7 (u) 

0.2 (0, 0.1) 2 (0, 1) 10 0.2 (0, 0.2) 6.8 (u) 

0.1 (0, 0.1) 2 (0, 1) 10 0.2 (0, 0.2) 4.2 (u) 

0 (0, 0.1) 2 (0, 1) 10 0.2 (0, 0.2) none 

cy: cycles/2000 time steps; u: unstable. 
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Table 3. Effects of Kc, and lattice size on synchronization (SYNC). 

      121 Elements 144 Elements 

Fc Fr Gc Gr Kc Kr SYNC SYNC (cy) 

0.4 0 0.2 (0, 0.2) 1 (0, 1) none none or 12.5 (u) 

0.4 0 0.2 (0, 0.2) 2 (0, 1) none 12.2 

0.4 0 0.2 (0, 0.2) 3 (0, 1) none 12.2 

cy: cycles/2000 time steps; u: unstable. 

 
point of Phase 4 is defined as 2jπ (Figure 2). Because ( )rem 2π,

mi
θ  is between 

A1 and A2 in this figure, the im-th neighbor influences the i-th element. When 
( )rem 2π,

mi
θ  is not between A1 and A2, the im-th neighbor does not influence 

the i-th element. 
Assumption 5: When the phase of the i-th element, for any integer multiple 

of 2π, is between 0 and π × Hi, any neighbor of the i-th element is restricted to 
the neighbors with a phase between πi iGθ − ×  and πi iGθ + ×  for any integer 
multiple of 2π. The value π 2iG× ×  is called the interaction time. The value of 
Gi is from 0 to 1, and varies marginally around a certain common value. Hence, 
Gi is the sum of a common value Gc and a random value 

ir
G . The random value 

is given individually and is generated from a uniform distribution of random 
numbers between 0 and 0.2. Hence, 

ir
G  is denoted as (0, 0.2). Further, 

ii c rG G G= + . 
Assumption 6: The mean Mf and standard deviation SDf of the frequencies of 

all elements are calculated over a period 2000 time steps in length (unit of fre-
quency, cy: cycles/2000 time steps) (Figure 3). An arbitrary peak of ( )1rem , 2πθ  
is employed as a reference peak. One cycle is 2,000/Mf time steps. The difference 
between the time step at the reference peak and a time step at each of the other 
peaks of ( )rem ,2πiθ , i ≥ 2, is calculated. The standard deviation of these dif-
ferences is divided by the time steps of one cycle. This quotient is denoted by 
SDp (no units). When f f0 SD 0.1 M≤ ≤ ×  and p0 SD 1 8≤ ≤ , it is considered 
that the elements synchronize with respect to frequency and phase (frequency- and 
phase-synchronization). This means that about 95% of frequencies are between 
Mf × 0.8 and Mf × 1.2 and about 95% of the peak phases are between the phase of 
the reference peak −π/2 and the phase of the reference peak +π/2 because the 
phases are presumed to be distributed normally. Hence, this model is believed to 
simulate simultaneous firing of pacemaker cells, which generates an impulse 
traveling through the stimulating conducting system. Figure 3 shows an exam-
ple of calculation of Mf, SDf, and SDp. Mf and SDf from 0 to 2000 time steps are 
14.2 cy and 0.2 cy, respectively. Because the condition f f0 SD 0.1 M≤ ≤ ×  is not 
satisfied, frequency-entrainment does not occur from 0 to 2000 time steps. Be-
cause Mf and SDf from 4000 to 6000 time steps are 14.0 cy and 0.1 cy, respec-
tively, the condition: f f0 SD 0.1 M≤ ≤ ×  is satisfied and frequency-entrainment 
occurs. An arbitrary peak of ( )1rem ,2πθ  is employed as a reference peak (red 
circle). The difference between the time step at the reference peak and a time 
step at each of the other peaks (blue circles) of ( )rem ,2πiθ , i ≥ 2, was calculated.  
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Figure 3. Example showing calculation of the mean Mf and standard deviation SDf of the fre-
quencies of nine elements as well as the standard deviation SDp of the differences between the 
phases of the peaks. Here, Mf and SDf are calculated over 2000 time steps (unit of frequency, cy: 
cycles/2000 time steps). The parameters are defined in Table 1 (Fc = 0.4, Fr = (0, 0.1), Gc = 0.2, 
Gr = (0, 0.2), Kc = 1, and Kr = (0, 1)). Each ordinate is ( )rem , 2πiθ  ( 1, 2, ,9i =  ). 

 
One cycle is 2000/14.0 = 142.9 time steps. Because SDp = 0.08, the condition 

p0 SD 1 8≤ ≤  is satisfied. Hence, frequency- and phase-synchronization occurs. 
The phases θi ( 1,2,3, ,i n=  ) are calculated using MATLAB® to solve the diffe-
rential equations. The calculation precision depends on the time step. Although 
2 time steps, 0.1 and 0.01, have been used preliminarily, both have given the 
same results to calculate frequency. Hence, time step 0.1 is selected. It is needed 
that the time span is long enough to examine whether the elements synchronize 
or not. The time span is from 0 to 2000 (if necessary, 6,000). Hence, the data 
length of θi ( 1,2,3, ,i n=  ) is 20,000 (or 60,000) time steps. The initial condi-
tion is a set of uniformly distributed random numbers in the interval (0, 5). 

3. Simulation Results 

1) Effects of Fr, Gc, and lattice size 
Table 1 summarizes the effects of Fr, Gc, and lattice size on the results. When 

all 
ir

F  equal zero (that is, the frequencies of the elements are the same), syn-
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chronization of the elements depends on the lattice size. Specifically, when Gc = 
0.2, the elements barely synchronize when the lattice size is small and the syn-
chronization is unstable. In contrast, when Gc = 0.8, smaller lattices, even lattices 
of only nine elements, synchronize stably. Table 3 shows that when all 

ir
F  equal 

zero, 121-element lattices do not synchronize, even when Kc = 3. In contrast, a 
144-element lattice (12 × 12 elements) synchronizes when Kc < 3. 

2) Effect of fewer connections between neighbors 
Each element connects with four neighbors. For example, a 144-element lattice 

has 290 different connections. Here, the percentage of invalid connections with 
respect to total connections is denoted as %Kzero. When Fc = 0.4, Fr = (0, 0.1), Kc 
= 2, Kr = (0, 1), %Kzero = 10, Gc = 0.2, and Gr = (0, 0.2), a 144-element lattice 
synchronizes with a %Kzero of less than 23 (Figure 4). As %Kzero increases, it 
takes the elements longer to synchronize (a longer delay). 

3) Effects of a lower common frequency on synchronization 
Assumption 2 states that the frequency of each element varies marginally 

around a certain common frequency. Hence, Fi is the sum of common frequency 
Fc and random frequency 

ir
F . Several cases in which Fc is varied from 0.4 to 0 

are examined (Table 2). When Fc is lower, the elements synchronize less unstably 
and ultimately do not synchronize at all. In other words, as the ratio of Fc to 

ir
F  

is lower, the elements hardly synchronize. 

4. Discussion 

The findings of the simulation and their interpretations are as follows: 
1) When all 

ir
F  equal zero and Gc is small in a small lattice, the elements do 

not synchronize. In contrast, even if all 
ir

F  equal zero, the elements of a small 
lattice synchronize with large Gc. Assumption 5 states that the elements influen-
cing the i-th element are restricted to neighbors with a phase between 

πi iGθ − ×  and πi iGθ + ×  for any integer multiple of 2π. The findings indicate 
 

 
Figure 4. Effect of fewer connections between neighbors. %Kzero: 
the percentage of invalid connections with respect to total connec-
tions. The ordinate is a delay in synchronization. The conditions of 
parameters: Fc = 0.4, Fr = (0, 0.1), Kc = 2, Kr = (0, 1), %Kzero = 10, 
Gc = 0.2, and Gr = (0, 0.2). The delay becomes longer exponentially 
beyond %Kzero = 10. The elements eventually become unable to 
synchronize at %Kzero = 23. 
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that elements with the same frequencies barely synchronize when Gc is small. 
When the lattice size is bigger, the cells synchronize. In the initial condition, the 
phases of the elements are uniformly random. Because an element interacts only 
with the neighbors with a similar phase, the probability that it is influenced by 
neighbors decreases as Gc decreases. Hence, when the frequencies (that is, phas-
es) of the elements are more varied, this probability increases. This suggests that 
the diversity of frequencies (or phases) of the elements is necessary for the ele-
ments to synchronize. This suggestion is supported by the fact that the elements 
of smaller lattices synchronize easily when Fr does not equal zero or when Gc is 
larger. When Fr equals zero, a 121-element lattice does not synchronize even 
when Kc = 3. In contrast, a 144-element lattice synchronizes when Kc < 3. These 
findings suggest that the diversity of frequencies is more effective for element 
synchronization than the strength of interaction between neighboring elements. 

2) The synchronization of a 144-element lattice occurs when Gc = 0.2, Kc = 2, 
and %Kzero < 23. It has been reported that gap junctions are sparser in the si-
noatrial node than in the surrounding atrial muscle [12]. Hence, this report sug-
gests that %Kzero, which corresponds to the percentage of invalid gap junctions, 
is greater than zero. In the present study, the synchronization for generating an 
impulse traveling through the stimulating conducting system is assumed to be 
frequency- and phase-entrainment. When Gc is large, each element can be af-
fected by the phases of its neighbors that are rather different from its phase. In 
this case, although frequency entrainment occurs easily, phase-entrainment does 
not also occur. Hence, small Gc is necessary for phase-entrainment. These con-
siderations indicate that the conditions Fc = 0.4, Fr = (0, 0.1), Kc = 2, Kr = (0, 
1), %Kzero = 10, Gc = 0.2, and Gr = (0, 0.2) for the elements, are likely conditions 
for simulating pacemaker cells. If %Kzero is increased, it takes the elements more 
time to synchronize (Figure 4). Since the delay becomes longer exponentially 
beyond %Kzero = 10, the elements will not synchronize abruptly at %Kzero = 23. 
It suggests that the maximum sinus node recovery time (clinically about 1.5 s 
[8]) appears around %Kzero = 23. 

The overdrive suppression test is used clinically to examine sinoatrial node 
functionality. In this test, the sinoatrial node comes to a standstill immediately 
after a high-frequency repetitive stimulation and then restores a regular rhythm 
after the sinus node recovery time, which indicates the degree of sinoatrial node 
dysfunction [8] [9]. Although some mechanisms of its dysfunction have been 
described, the common final pathway in most instances seems to be chronic fi-
brosis of the sinus node [10]. It has been reported that the remodeling of gap 
junctions is caused by structural heart diseases, such as ischemia or hypertrophy, 
and aging [13]. If these causes make gap junctions sparser, sinus node recovery 
time will lengthen and eventually the sinoatrial node will generate no impulses 
that can travel through the stimulating conducting system. This phenomenon 
(sick sinus syndrome) may be postulated from the results that it takes the ele-
ments more time to synchronize when %Kzero increases (Figure 4). 
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3) The results also suggest that if the common frequency is lower, the elements 
do not synchronize when %Kzero = 10, Gc = 0.2, and Kc = 2. These conditions are 
selected because the second finding above indicates that they are suitable for simu-
lating pacemaker cells. It has been reported that the intrinsic frequencies of pace-
maker cells decreases with aging [14]. This phenomenon may be simulated by 
lower Fc. It is presumed to be one of mechanisms that cause the sinoatrial node to 
be unable to synchronize steadily and could be an age-related cause of sick sinus 
syndrome. On the other hand, intrinsic heart rate of normal subjects is rather fast 
[14]. The reason for this was for a long time unknown. Heart rate is controlled 
within a normal range of 60 to 100 beats per minute under the autonomic nervous 
control. Since the elements hardly synchronize with the ratio of Fc to 

ir
F  being 

lower, a high ratio of Fc to 
ir

F  is necessary for synchronization. Probably, this is 
the reason that intrinsic heart rate of normal subjects is rather fast. 

4) Study limitations 
The largest lattice size is 144 elements (12 × 12 elements). It takes about six 

hours to solve 144 differential equations using MATLAB®. It takes too long to 
calculate a lattice with 225 elements (15 × 15 elements) in practice. Hence, the 
maximum lattice size in the present study is 144 elements. This model is de-
scribed using some parameters for frequency, the period of Phase 4, and interac-
tion. Although values for these parameters that simulate pacemaker cells were 
determined from many trial-and-error experiments, the validity of these values 
should be investigated in the future. 

5. Conclusion 

In this study, the Kuramoto phase model was modified by incorporating the 
interaction time of Phase 4, during which each element can interact with its 
neighbors, as a variable. The results are as follows: 1) Certain values for the 
frequency, interaction time, and degree of interaction are found to simulate 
pacemaker cells; 2) Diversity in the intrinsic frequencies of the elements pro-
motes their synchronization, although the same frequencies should be easier to 
synchronize; 3) Increasing the proportion of invalid connections in the model 
(which corresponds physiologically to sparser gap junctions) causes the ele-
ments to take longer to synchronize and eventually become unable to syn-
chronize at all; 4) Decreasing the intrinsic frequencies of the elements prevents 
them from synchronizing. These results indicate a possible mechanism for the 
age-related causes of sick sinus syndrome. 
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