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Abstract 

A previous preon model for the substructure of the standard model quarks 
and leptons is completed to provide a model of Planck scale gravity and black 
holes. Gravity theory with torsion is introduced in the model. Torsion has 
been shown to produce an axial-vector field coupled to spinors, in the present 
case preons, causing an attractive preon-preon interaction. This is assumed to 
be the leading term of UV gravity. The boson has an estimated mass near the 
Planck scale. At high enough density it can materialize and become the center 
of a black hole. Chiral phase preons are proposed to form the horizon with 
thickness of order of Planck length. Using quantum information theoretic 
concepts this is seen to lead to an area law of black hole entropy. 
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1. Introduction 

The purpose of this brief note is to develop further a spin 1/2 preon model in 
order to give it group theoretic structure, including internal ( )SU N  type, 
topological global knot and spacetime Poincaré symmetries. This is an early 
milestone in a long term process to find a physically acceptable and comprehen- 
sive realization for the original model [1]. The model should fulfill four 
requirements:  

1. provide a single global group structure for preons, quarks and leptons,  
2. introduce preon properties so that they imply in the adjoint representations 

the standard model (SM) local gauge group structure ( ) ( ) ( )3 2 1SU SU U× × , 
3. introduce Planck scale gravity that is Einstein-Hilbert (EH) compatible, i.e. 
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it should contain general relativity (GR) plus corrections in the low energy limit, 
with least order derivative terms in the action, and  

4. propose a tentative corpuscular structure for black holes with an area law 

entropy of the form 1
4

S A= . 

These goals are approached as follows. The preon model [1] [2] [3] [4] can be 
formulated group theoretically using the results derived by Finkelstein [5]: the 
global knot algebra ( )2SLq  symmetry for preons, quarks and leptons. 
Secondly, the specific construction of the preon model, indicated in (2.1), 
directly suggests the gauge group structures ( )2SU  and ( )3SU  for the weak 
and strong interactions, respectively. 

Thirdly, fermion fields in Einstein-Cartan [6], or Einstein-Cartan-Kibble- 
Sciama (ECKS) [7] [8] gravity have been shown by Fabbri to yield interesting 
results for torsion coupling to spinor fields [9]. This interaction has been shown 
to express a massive axial-vector field W coupled to Dirac fermions. The axial- 
vector is used as the force field for preon-preon interactions. It originates from 
translation, or rather translational rotation, symmetry of the full Poincaré gauge 
group of the action. A model for Gedanken preon phenomenology is in this way 
introduced for energy scales, say approximately 16 1910 GeV 10 GeVE≤ ≤ . At these 
energies the axial-vector boson may materialize due to preon-antipreon 
annihilation in stellar collisions or in similar energy density thermal environ- 
ment at big bang. At 1910 GeVE ≥  the axial-vector bosons may serve as seeds 
for non-singular black hole formation. Near and above Planck scale the particle 
interactions due to curvature of general relativity are assumed to be compara- 
tively small, but the essence of GR to spacetime structure rules as traditionally 
thought. At terrestrial and astronomical scales the effects of curvature dominate 
gravitational phenomena. There is duality between the standard model particles 
and black holes. In principle, one is calculable from the other. This is more like 
Regge-resonance duality rather than the more modern holographic duality. 
Cursory derivation of the area law for black holes, 4S A= , is provided using 
quantum information theoretic concepts [10]. 

The organization of this note is the following. The preon model is described in 
Section 2. The particle classification group ( )2SLq  is discussed in Subsection 
2.2. The model for black hole structure using the torsion field is described in 
Subsection 3.1. ECKS gravity with torsion is introduced and summarized in 
Subsections 3.2 and 3.3. Information theory, correlations and area law are 
sketched in Section 4. In Section 5 some interesting thoughts on the nature of 
quantum spinor field equations are briefly quoted. Finally, conclusion are made 
in Section 6. The Subsections 2.2 and 3.3 can be omitted on first reading. 

This note is mostly of mini-review nature with some new proposals for black 
holes. I do not expect everything to be correct, or even less complete—the goal is 
achieved if 1) the reductionistic path defined in Subsection 2.1 will be 
substantiated, and 2) the ECKS theory results as presented here will provide a 
first approximation for gravity near Planck scale. 
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2. Preons 
2.1. The Standard Model Particles 

The constituents of quarks and leptons must include an odd number of spin 1/2 
particles. I consider the case of three constituents, preons. Requiring charge 
quantization {0, 1/3, 2/3, 1} and fermionic permutation antisymmetry for same 
charge preons, four bound states of three light preons have been defined. These 
form the first generation quarks and leptons consisting (denoted by := below) of 
preons as follows [1] [2] 

0

0 0

0 0 0

:

:

:

:

k ijk i j

k ijk i j

ijk i j k

ijk i j k

u m m m

d m m m

e m m m

m m mν

+ +

+

− − −

=

=

=

=









                     (2.1) 

where m+  is the charge 1/3 preon, 0m  the neutral preon and m−  and 0m  
are their antiparticles. 

A feature in (2.1) with two same charge preons is that the construction 
provides a three-valued index, which fits well for quark ( )3SU  color, as it was 
originally discovered historically [11]. The corresponding color gauge bosons are 
in the adjoint representation. The weak ( )2SU  left-handed doublets can be 
read from the first two and last two lines in (2.1). The standard model gauge 
structure ( ) , 1, 2SU N N =  is emergent in this sense from the present preon 
model. In the same way quark-lepton transitions between lines 1↔3 and 2↔4 in 
(2.1) are possible. The preon and SM fermion group structure is better 
illuminated with the representations of the ( )2SLq  group in the subsection 2.2. 

The above gauge picture is supposed to hold in the present scheme up to the 
energy of about 1016 GeV. The electroweak interaction is in the spontaneously 
broken symmetry phase below energies of the order of 100 GeV and in the 
symmetric phase above it. The electromagnetic and weak forces take separate 
ways at higher energies ( 16100 GeV 10 GeVE� � ). The weak interaction 
restores its symmetry but melts away due to ionization of quarks and leptons 
into preons. The electromagnetic interaction, in turn, stays strong towards 
Planck scale, 19

Pl ~ 1.22 10 GeVM × . Likewise, the quark color and leptoquark 
interactions suffer the same destiny as the weak force. One is left with the 
electromagnetic and gravitational forces only at Planck scale. 

The problem of three generations of quarks and leptons is not solved here. 
Without a true theory of quantum gravity one may just expect that gravitational 
or topological effects should come into play, but also group theoretic solutions 
have been proposed in the past. 

2.2. Knot Theory 

Early work on knots in physics goes back in time to 19th and 20th century [12] 
[13]. On the 21st century Finkelstein has proposed a model based on the group 

( )2SLq  [5]. This group actualizes the needs of the model of the previous 
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Section 2. 
Let us consider the simple case of two dimensional representation of the 

group ( )2SLq  which is defined by the matrix  

1 2
mm

a b
T D

c d′
 

= =  
 

                      (2.2) 

where ( ), , ,a b c d  satisfy the knot algebra  

1
1 1

      1   

      1   

ab qba bd qdb ad qbc bc cb
ac qca cd qdc da q cb q q−

= = − = =

= = − = ≡
           (2.3) 

where q is defined as follows from the matrix    

2

1

0
0
α

α
 

=  − 
                        (2.4) 

The matrix   is invariant under the transformation  
t tT T T T= =                          (2.5) 

where tT  is T  transposed and 1 2q α α= . 
Higher representations of ( )2SLq  are obtained by transforming the 

( )2 1j +  monomials 

1 2 ,n nj j
m mN x x j m j+ −Ψ = − ≤ ≤                   (2.6) 

by  

1 1 2x ax bx′ = +                         (2.7) 

2 1 2x cx dx′ = +                         (2.8) 

where ( ), , ,a b c d  satisfy the knot algebra (2.3) but 1x  and 2x  commute and 
n j m± = ± , and  

1 1

1 2
! !j

m q qN n n
−

+ −
 =                       (2.9) 

and 
1

1

n

q

qn
q

−

=
−

. It is found that  

( )j j j
m mm mD ′ ′
′Ψ = Ψ∑                       (2.10) 

where 

( )
( )
( )

( ) ( )
,
,

| , , , , , , a b c d

a b
c d

n n n nj j
mm mm a c a b

n n n
n n n

D q a b c d A q n n n n n a b c d
δ
δ

δ
+
−

′ ′ +
+
+

′= +∑  (2.11) 

where n j m±′ ′= ± , j
mmD ′  is a 2j+1 dimensional representation of the ( )2SLq  

algebra and the j
mmA ′  is  

( )
1 2

1 1 1 1

1 1 1 1 1 1

! !
, ,

! ! ! !
j

mm a c
a b c d

n n n n
A q n n

n n n n n n
+ − + −

′
+ −

′ ′ 
=  
  

        (2.12) 

The oriented 2-dimensional projection of a 3-dimensional knot can be 
assigned three coordinates ( ), ,N w r  where N is the number of crossings, w is 
the writhe and r the rotation. One can transform to new coordinates ( ), ,j m m′ . 
These indices label the irreducible representations of j

mmD ′  of the symmetry 
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algebra of the knot, ( )2SLq  by setting  

( )2,  2,  2j N m w m r o′= = = +                 (2.13) 

This linear transformations makes half-integer representations possible. The 
knot constraints require w and r to be of opposite parity, therefore o is an odd 
integer. The knot ( ), ,N w r  may be labeled by ( ) ( )2

2, 2 , , ,N
w r oD a b c d+

. 
One assigns physical meaning to the j

mmD ′  in (2.11) by interpreting the a, b, 
c, and d as creation operators for spin 1/2 preons. These are the four elements of 
the fundamental 1 2j =  representation 1 2

mmD ′  as indicated in Table 1. For 
notational clarity, I use in Table 1 and Table 2. the preon names of [5]. The 
preon dictionary from the notation of [1] is the following: 

0

0

,  

,  

m a m c
m d m b

+

−

� �

� �
                     (2.14) 

The standard model particles are the following elements of the 3 2
mmD ′  

representation as indicated in Table 2. 
All details of the ( )2SLq  extended standard model are discussed in the 

review article [5], including the gauge and Higgs bosons and a candidate for 
dark matter. I do not, however, see much advantage for introducing composite 
gauge bosons in the model. Introduction of color from preons is done slightly 
differently in [5]. In the early universe developments there is similarity between 
the knot model and the present preon model. Therefore, apart from the 
differences in color interpretation, the model of [1] and the knot algebra of [5] 
are equivalent in the fermion sector. 

In summary, knots having odd number of crossings are fermions and knots 
with even number of crossings are correspondingly bosons. The leptons and 
quarks are the simplest quantum knots, the quantum trefoils with three 
crossings and 3 2j = . At each crossing there is a preon. The free preons are  
 
Table 1. The 1 2D  representation of the four preons. 

m m' preon 

1/2 1/2 a 

1/2 −1/2 b 

−1/2 1/2 c 

−1/2 −1/2 d 

 
Table 2. The 3 2D  representation of the standard model particles. 

m m' particle preons 

3/2 3/2 electron aaa 

3/2 3/2 neutrino ccc 

3/2 −1/2 d-quark abb 

−3/2 −1/2 u-quark cdd 
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twisted loops with one crossing and 1 2j = . The 0j =  states are simple loops 
with zero crossings. 

3. Gravity 
3.1. Black Hole Structure 

The Einstein-Hilbert theory of gravity, or general relatitvity, provides rotational 
curvature (cf. rolling a piece of dough) to spacetime in terms of the metric tensor. 
This is the prevalent dogma in gravity. It is not, however, the most general case 
of gauge symmetry available. The EH theory can be generalized by including in 
the action terms of torsion, which leads to translational curvature (cf. turning 
screw) in spacetime. This way the full symmetry of the ten parameter Poincaré 
group can be taken into account. The new theory is called Einstein-Cartan- 
Kibble-Sciama theory of gravity. Torsion is physically realized by the appearance 
of an axial-vector boson W (weak interaction bosons are not considered in this 
note). Interesting enough, the W does not couple to the metric or gauge degrees 
of freedom [9]. Metric tensor, or gravitons, and torsion are independent degrees 
of freedom in ECKS gravity, therefore they couple independently to matter. 

Preons, with some small value of mass, interact by coupling to the axial-vector 
boson W with strength Wg . The preon-preon interaction is attractive [9] 
providing the binding for three preon states. The mass of the axial-vector boson 
is estimated to be of the order of the GUT or Planck scale 1016-19 GeV (see below 
in this section). This makes the torsion interaction range very short. At all scales 
the W couples to preons relatively strongly but to the standard model particles 
always weakly. I make the proposal that the torsional interaction gives the 
dominant semi-quantum contribution of gravity at Planck scale. The graviton 
interaction there is assumed negligible. In the case of black holes, the role of 
rotational curvature, or gravitons, at Planck scale is traditionally to give the 
radius-mass relation of the black hole horizon. Below I propose an alternative, 
dynamical definition of horizon. The BH singularity is not discussed here except 
that it is not important within the scope of this note or it is removed by quantum 
effects. 

The field equation for torsion axial-vector is (3.24), from Subsection 3.3  

( ) 2
WW M W gρµ µ µ

ρ ψ ψ∇ ∂ + = γ π                  (3.1) 

where M is the axial-vector mass, Wg  the preon--axial-vector coupling and ψ  
the preon wave function. The coupling Wg  must be larger than the electro- 
magnetic coupling α  to keep the charged preons bound. In ECKS gravity, Wg  
is independent of the gravitational coupling [9]. The key point of this model of 
gravity is that (3.1) depends only on the axial-vector W and preon ψ  fields, not 
on gauge and metric factors. 

Couplings in GUT theory are of the order 0.02 at the GUT scale. With a 
Yukawa potential in the Schrödinger equation ( ) ( )0  expV r V ar r= − −  [14], or 
in our notation ( )expWg r M r−  with the physicality condition  

1 Wn l g mM+ + ≤ , one may estimate that large M correlates with small preon 
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mass protonm m� . These matters deserve naturally quantitative attention. 
The axial-vector field is expected to appear as a physical particle whenever its 

production is energetically possible. At Planck scale energy the axial-vector 
boson serves as a seed for black hole formation causing a black hole to appear. 
With the growing black hole mass the fermion spins average out towards zero 
and torsion vanishes but the physical “fat” boson remains. 

The horizon may as well be a very thin shell of massless preon-antipreon pairs. 
In fact, an alternative definition for the horizon can be this dynamical formation 
of an preon-antipreon “cloud”. In that case the nature of gravity near Planck 
scale would be different from textbook GR. The number of pairs is correlated 
with the mass of the black hole, and they may form Cooper pairs. A prototype 
for the lightest black hole is a preon-antipreon-W bound state, see Figure 1. It is 
a physical state which couples to quark-antiquark and lepton-antilepton pairs. 
This state was called gravon in [15]. 

For the local energy density of the gravitational field there is no well-defined 
covariant notion. Quasilocal energy (QLE) is the next best thing, the energy 
contained on a two dimensional surface. For round spheres in spherically 
symmetric spacetimes there is good agreement as to what QLE should be. The 
standard definition is the classical Misner-Sharp (MS) energy [16] [17] [18]. 

A good contender with numerous attractive features is the Brown-York (BY) 
QLE [19] which is based on the covariant Hamilton-Jacobi formulation of 
general relativity. In [20] the BY QLE was considered in a model where the 
energy was calculated as coming from elementary surface constituents 

( )8πE a G A=  where a is the constant proper acceleration of an observer on 
the stretched horizon and A is the area of the horizon. Therefore black hole 
energy should be quantized as follows  

2
PlE const n l= × ×                        (3.2) 

with the constant being ( )8πa G  and 2,3,4,n = �  provided a sphere and 
other polyhedra-type objects can be smoothly covered in the given spacetime 
with n Planck areas. For comparison, loop quantum gravity gives the following 
area eigenvalues ( )2

Pl 1p ppA const l j j= × +∑  with pj  a half integer [21]. 
 

 
Figure 1. An artist’s view of a black hole hypothetical model structure. Blue circle is a 
preon ( )0m m+  and red ( )0m m−  an anti-preon. W is the axial-vector boson. The 

preon-antipreon pair makes the horizon. The axial-vector boson replaces the singularity 
at the center of the hole in this model. The particles shown are the “partons” of the 
model. Blurred lines and dot indicate quantum particles. 



R. Raitio 
 

8/16 OALib Journal

The density of a minimal mass black hole inside a sphere of Schwarzschild 
radius is 5 99 3 94 310 10 g cm 10 g cm− − = . The density of nuclear matter is a way 
below this, about 14 34 10 g cm× . In terms of solar mass the density of a black 
hole is ( )216 32 10 g cmsunM M× ×  where M is the mass of a star. The torsion 
induced interaction becomes effective only at densities of matter closer to Planck 
density than nuclear density, or for objects whose mass is closer to Planck mass 
rather than the solar mass. 

There is in this model a particle-black hole duality in four dimensions. It is 
Regge-resonance type rather than of the more modern holographic. On the 
particle side the fermions-quarks and leptons having preons inside-show up. 
The axial-vector binds the preons, and the graviton is “visible in the sky”— 
starting from GPS systems up to the whole universe. On the black hole side EH 
gravity provides the shape of spacetime like the wormhole and the horizon 
where the preons are hidden. The axial-vector is the dominant interaction while 
those due to gravitons are negligible. In principle, one side is calculable from the 
other. This duality may help to give the reason to the magical relationship “ER = 
EPR” [22] (to which I hope to return later). 

One may now propose that, as far as there is an ultimate unified field theory, 
it is a preon theory, like the one proposed here, with Einstein-Cartan-Kibble- 
Sciama gravitational and electromagnetic interactions only. 

In the early universe, the strong and weak forces are generated only after 
massless preons combine into quarks and leptons at lower temperature. These 
two forces function only with short range within nuclei making atoms, 
molecules and chemistry possible. In a contracting phase of the universe the 
same processes take place in the reverse order. Massless preon models are a 
candidate for building conformal cosmological models, see e.g. [23]. 

3.2. Einstein-Cartan-Kibble-Sciama Gravity 

To build a full Poincaré group gauge theory for gravity one has boosts, rotations 
and translations to consider: the rotations lead to curvature and the translations 
to torsion in spacetime. From a different point of view, curvature arises in the 
form of metric from energy and torsion in the form of a connection from spin. 
Torsion is therefore defined on microscopic scales. Torsion requires extension of 
the Riemann geometry to Riemann-Cartan (RC) geometry [6]. RC gravity, or 
Einstein-Cartan-Kibble-Sciama (ECKS) [7] [8] gravity can be reduced to 
Einstein gravity plus torsional contributions. The ECKS theory with Dirac 
spinor matter fields has been developed by Fabbri [9]. This work yields a 
massive axial-vector coupled to spinors. His goal in general is to explain most of 
the open problems in the standard model of particles (and cosmology) as well as 
to analyze the nature of spinor fields. Here I mainly apply the axial-vector 
coupling of [9] to preon interactions. 

In general relativity metric is used to measure distances and angles. 
Connections are used to define covariant derivatives. In general form, a covari- 
ant derivative of a vector is defined by  
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D V V Vµ µ ρ µ
α α ρα= ∂ + Γ                    (3.3) 

The connection µ
ραΓ  has three indices: µ  and ρ  shuffle, or transform, 

the components of the vector V ρ  and α  indicates the coordinate in the 
partial derivative. 

Metric and connection should be unrelated. This is implemented by 
demanding that the covariant derivative of the metric vanishes. In this case the 
connection is metric-compatible. Metric-compatible connections can be divided 
into antisymmetric part, given by the torsion tensor, and symmetric part which 
includes a combination of torsion tensors plus a symmetric, metric dependent 
connection called the Levi-Civita connection. 

In a general Riemannian spacetime R , at each point p with coordinates xµ , 
there is a Minkowski tangent space pT=M R , the fiber, on which the local 
gauge transformation of the 

x
T µ R  coordinates ax  takes place  

( )a a ax x xµ′ = +                        (3.4) 

where a  are the transformation parameters, µ  is a spacetime index and a a 
fiber frame index. 

The dynamics of the theory is based on vierbeins (tetrads)  
ae µ , not on the 

metric tensor gµν . The Cartan connection has a primary role and it is  

 
a

ae eµλν µ λ νΓ = ∂                       (3.5) 

The tensor associated with this connection is torsion tensor 

( ) 
   

a a
aT e e eµ µ

λν λ ν ν λ= ∂ − ∂                   (3.6) 

Unfortunate for the development of gravitation theory, spin was not 
discovered in the laboratory before 1916. Spinors were introduced in mathema- 
tics by Cartan in the 1920's and spinor wave equation was found by Dirac in 
1928. 

3.3. Torsion as Axial-Vector Massive Field 

Torsion has the property that it can be separated from gauge and metric factors. 
Let us start from the metric connection  

( )1
2

g g g gρ ρµ
αβ β αµ α µβ µ αβΛ = ∂ + ∂ − ∂                 (3.7) 

The torsion tensor is completely antisymmetric only if some restrictions are 
imposed, called the metric-hypercompatibility conditions [24] [25] [26] [27] 
[28]. Then it can be written in the form  

1
6

Q W µ
ασν µασνε=                          (3.8) 

where W µ  is torsion pseudo-vector, obtained from the torsion tensor after a 
Hodge dual. With the metric connection and the torsion pseudo-vector the most 
general connection can be written as a sum of ρ

αβΛ  and Qασν  as follows  

( )1 1
2 6

g g g g Wρ ρµ ν
αβ β αµ α µβ µ αβ νµαβε Γ = ∂ + ∂ − ∂ +  

          (3.9) 

Functions a
bµΩ  that transform under a general coordinate transformation 
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like a lower Greek index vector and under a Lorentz transformation as  

( ) ( ) ( )1 1a bka a a
b a b bk bν ν ν
′ ′ − −
′ ′

 ′Ω = Λ Ω − Λ ∂ Λ Λ  
              (3.10) 

are called a spin connection. The torsion in coordinate formalism is defined as 
follows  

( )a a a b a b a
b bQ e e e eµν µ ν ν µ ν µ µ ν= − ∂ − ∂ + Ω − Ω              (3.11) 

and the spin connection is given by  

( )a a k
b b ke e e eν ρ ρ
µ ρ νµ µ νΩ = Γ − ∂                  (3.12) 

which is antisymmetric in the two Lorentz indices after both of them are 
brought in the same upper or lower position. The most general spinorial 
connection is  

1
2

ab
ab iqAµ µ µ= Ω + σΩ                    (3.13) 

where Aµ  is the gauge potential. The spinorial curvature is using the spinorial 
connection  

,αβ α β β α α β = ∂ − ∂ +  F Ω Ω Ω Ω                 (3.14) 

Let us define the decomposition of the spinor field in its left and right parts  

L L R Lψ ψ ψ ψ= =π π                     (3.15) 

R R L Rψ ψ ψ ψ= =π π                     (3.16) 

so that  

L R L Rψ ψ ψ ψ ψ ψ+ = + =                   (3.17) 

Now one has 16 linearly-independent bi-linear spinorial quantities  
2 ab abψ ψ = Σσ π                        (3.18) 

2 ab abi Sψ ψ =σ                        (3.19) 
a aVψ ψ =γ π                        (3.20) 
a aUψ ψ =γ                         (3.21) 

iψ ψ = Θπ                         (3.22) 

ψψ = Φ                          (3.23) 

To have the most general connection decomposed into the simplest 
symmetric connection plus torsion terms we substitute (3.9) in (3.12) and this in 
(3.13). The field equations reduce to the following  

( ) 2
WW M W gρµ µ µ

ρ ψ ψ∇ ∂ + = γ π                (3.24) 

for torsion axial-vector and  

( )

( ) ( )

( )

( )

22

2 2

1 1 1
2 2 4 4

1
2

4
1
2 W

kR Rg g F g F F W g

W W M W W W g

i

g W W

ρσ ρσ ρσ ρσ ρα σ ρσ
α

σα ρ ρ σ ρσ
α

ρ σ σ ρ σ ρ ρ σ

σ ρ ρ σ

ψγ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

− −Λ = − + ∂
 − ∂ ∂ + − 
 

+ − + −

− + 

γ γ γ

γ π γ π

∇ ∇ ∇ ∇
     (3.25) 
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for the torsion-spin and curvature-energy coupling, and  

F qσµ µ
σ ψ ψ∇ = γ                         (3.26) 

for the gauge-current coupling; and finally  

0Wi g W mµ σ
µ σψ ψ ψ− − =γ γ π∇                 (3.27) 

for the spinor field equations which again can be split as  

( ) 0
2 W
i g W V mµ µ σ

µ µ σψ ψ ψ ψ∇ − − − Φ =γ γ∇  

0U µ
µ∇ =  

( ) 0
2 W
i g W Uµ µ σ

µ µ σψ ψ ψ ψ− − =γ π γ π∇ ∇  

2 0V mµ
µ∇ − Θ =  

( ) 2 2 0Wi S g W mUα α µα σα α
µ σψ ψ ψψ− −∇ + Σ − =∇ ∇  

( )2 2 0Wg Wµ µ
α µα µα αψ ψ ψ ψΦ − − + Θ =σ σ∇ ∇ ∇  

( )2 2 2 0Wi g W mVµ µ
ν µν µν ν νψ ψ ψ ψ∇ Θ− − − Φ + =σ π σ π∇ ∇  

( ) 2 0Wg W Sµ µ
α α µα µαψ ψ ψ ψ− +∇ Σ + =π π∇ ∇  

( )[ ] [ ] [ ]2 0WV i g W Vµ ρ
µραν α ν ν α α νε ψ ψ ψ ψ∇ + − + =γ γ∇ ∇  

( )[ ] 2 2 0WU i g W U mSα ν ανµρ ανσρ αν
ρ µ µ ρ σ ρε ψ ψ ψ ψ ε∇ + − − − =γ π γ π∇ ∇  

together equivalent to the spinor field equations above. From (3.24) one sees that 
torsion behaves like a massive axial-vector field satisfying Proca field equations. 
It is noted that torsion does not couple to metric or gauge fields. Torsion and EH 
gravitation seem to have the same coupling constant. However, in [9] it is shown 
that using the Einstein-Cartan-Sciama-Kibble field equations these two 
independent fields with independent sources can have independent coupling 
constants. 

The preon-preon interaction is attractive and of short range due to the mass 
of the axial-vector field. The interaction includes two free parameters, the 
coupling constant Wg  and the mass M  of the axial-vector. Therefore, bound 
states of preons may be formed in principle by the axial-vector interaction. 

The ECKS field equation described above can be derived using the standard 
variational method from a dynamical action whose Lagrangian function (up to 
possible scalars fields) is given as follows  

( )2 2 2 21 1 1 2 1
4 2 4

W

W M W R F
k k

i g W mµ µ
µ µψ ψ ψ ψ ψψ

= − ∂ + − − Λ −

+ − −γ γ π∇

L
           (3.28) 

The above Lagrangian (3.28) is theoretically sound. But for specific calcu- 
lations analytic and/or numerical approximations must be developed. 

4. Correlations and Area Law 

Correlations between between two systems, say A and B, are information of A 
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about B. Usually correlations are calculated as the decay of two-point functions 
as a function of distance. In physical situations it is often asked how correlations 
between a connected region A and its environment B scale with the size of the 
region B. In quantum systems at zero temperature all correlations are due to 
entanglement which is measured by entropy. The entropy of black holes scales 
with the area-not volume-of the surface at the event horizon. The area law holds 
in the form that the maximal information content of the surface comes from 
elementary areas of size 2

Pll  containing one bit of information. 
Area law for entropy is found also in non-critical quantum lattice systems 

whereas critical systems allow for small logarithmic corrections. The area law 
can be intuitively understood by introducing characteristic length scale, the 
correlation length, which gives a measure of how fast two-point correlations 
decay. If the correlation length can be estimated, or calculated, and it is small 
compared to the typical size of the system, the area law is expected. This cannot, 
however, be rigorously proved in general. 

In the following I make use of the lattice model and results of [10] and 
introduce a quantum information theory concept, the mutual information. The 
mutual information and entanglement entropy coincide at zero temperature. 
Secondly, mutual information measures the total amount of information of one 
system about another without leaving out hidden correlations. Thirdly, the area 
law can be proved at finite temperatures. 

Consider a system on lattice L in D spatial dimension which is translational 
invariant. Each lattice site represents a quantum spin state in Hilbert space d . 
Assume a probability function ρ  on the lattice and Aρ , Bρ  corresponding 
to disjoint sets ,A B L⊆ . The mutual information between sets A and B is 
defined as follows  

( ) ( ) ( ) ( ): A B ABI A B S S Sρ ρ ρ= + −                (4.1) 

where ( ) ( )logS trρ ρ ρ= −  is von Neumann entropy. The mutual information 
is the total amount of correlations between two systems. (4.1) quantifies the 
information about B obtainable from A. Properties of mutual information are: 
positivity, it vanishes if and only if the system factorizes and it is non-increasing 
under discarding parts of the system. 

The correlation length, defined by mutual information, is related with the area 
law. Consider a spherical shell with outer radius R and wall thickness L R� . 
The shell separates the inner region A from the exterior B. Denote the mutual 
information between A and B by ( )LI R  and define Mξ  as the minimal 
length obeying the inequality  

( ) ( )0 2LI R I R<                     (4.2) 

for all R. In other words, correlation length is measured by the mutual informa- 
tion. From the subadditivity property of entropy it follows that  

( ) ( ): : 2 CI A BC I A B S≤ +  and from this one gets  

0 2 4
M C MI I S Aξ ξ≤ + ≤ ∂                  (4.3) 
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where A∂  is the subset of A which is connected to the exterior by an 
interaction. The second inequality is obtained from the first one by inserting 

01 2
M

I Iξ ≤  and the relation ( ) MS C Aξ≤ ∂ . Therefore one gets an area law 
for the mutual information from the existence of the length scale Mξ  alone. 
This area law holds for zero temperature, too. Its violation implies infinite 
correlation length Mξ . 

Consider now a simple case of one dimensional long lattice. It can be 
obviously extended to two dimensions with additional translational symmetry. 
Start with an one dimensional finitely correlated state (FCS) [29]. Each FCS can 
be described by a completely positive, trace preserving map 1 1 2:T → ⊗    
with 1 2,   being Hilbert spaces of dimension 1 2,D D , respectively. Introduce 
( ) ( )2x tr T x=     and assume that ( )x  has just one eigenvalue of the order 

of one. The second largest eigenvalue of  , 2ε , depends on the standard 
correlation length like this: 2~ 1 log ξ ε− . To get an idea of Mξ  consider the 
fact that ABρ  factorizes exponentially with the separation L [10]  

( )( )1 expAB A B Lρ ρ ρ ξ− ⊗ = −               (4.4) 

With a few more steps it is found that  

( ) ( ) ( )( )log  expLI R D L L ξ≤ −               (4.5) 

Now ( )LI R  is bound from below, increases with R and decreases with L. 
Therefore Mξ  is finite and connected to ξ . 

Specify next the system as consisting of spin 1/2 singlets. For a given site i the 
probability of having s singlet at site j  is a function ( )f i j− . The number 
of singlets that connect two regions in the lattice gives the mutual information 
between those regions. Consider a case with ( ) ( )expf x x ξ∝ − , then the 
following conditions hold: (a) all correlation functions decay exponentially with 
the diistance and ξ  gives the correlation length, (b) ( )LI R  decays expo- 
nentially with L and Mξ ξ∝  and (c) an area law is found. If the probability 
function is ( ) ( )2 21f x x a∝ +  correlation functions decay as power laws with 
distance and the area law is violated with infinite correlation length. 

5. Considerations of Spinors Fields 

The incompatibility of gravity and second quantization, as well as the problem of 
radiative corrections, are discussed from a novel point of view in [9]. A major 
point is that, with gravity included in the theory, plane wave solutions do not 
exist any more. Instead, semi-localized fields can be derived by analyzing the 
self-interactions of the chiral components of the spinor fields. 

In quantum theory electrons are point-like particles. Radiative processes 
involving loop diagrams give the electron a self-interaction leading to mass and 
charge renormalization. It is proposed in [9] that the self-interaction of the 
electron field should be the mutual interaction of its two chiral components 
giving internal dynamics for extended fields. Consequently Zitterbewegung 
would actually influence the particles. The Zitterbewegung of Dirac spinor fields 
and quantum effects for structureless particles might coincide. If true this point 
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of view would imply a paradigm shift. And we might be closer to quantum 
gravity than commonly believed. 

6. Conclusions 

The preon model with spin 1/2 and charge 0 and 1/ 3±  constituents discussed 
above has a sound group theoretical structure based on some of the most 
successful groups. Both the preons and the quarks and leptons belong to two 
lowest representations of the global SLq(2) group, shown in Table 1 and Table 2 
in Subsection 2.2. With the four preons the local gauge groups of the standard 
model, ( ) ( ) ( )3 2 1SU SU U× ×  become visible. Preons, as Dirac spinors, are the 
fundamental building blocks of matter which couple to gravity near Planck scale 
predominantly by axial-vector boson coupling. Above the Planck scale the 
formation of black holes becomes possible with the axial-vector boson forming a 
seed for the hole and the chiral phase preon-antipreon pairs move on the 
horizon. The axial-vector coupled to the preons may make the singularity of the 
hole softer or fade away. 

It is hoped that the preon scheme [4] would provide a way towards a better 
understanding of the roles of all interactions. For that goal a special construction 
is proposed for the weak and strong interactions. They are bona fide gauge 
theories but emerge from the very basic fermion structure of the model (2.1). 
Gravity and electromagnetism are the “original” long range interactions in the 
big bang of cyclic cosmology. 

For quantum gravity the essential problem in model building is that we do 
not know the nature of quantum geometry. And we have no data to guide us. In 
this note I have taken the attitude that quantum gravity may, after all, be simpler 
than expected. At least the UV part of it may be closer to present quantum 
theory than commonly thought. In the present treatment, all the basic equations, 
of the standard model and the torsion field 3.24, are relativistic quantum 
equations. Therefore quantum gravity may be within reach in the sense of 
Section 5. The scenario presented above serves for most practical purposes 
where gravity is considered: for terrestrial to cosmological distances the classical 
Einstein-Hilbert equations work well and for the highly elusive Planck scale 
distances the Proca equation is a natural candidate, yet to be tested. 

A dual relationship was proposed between matter and black holes in four 
dimensions. One is, in principle, calculable from the other. But calculational 
methods for solving the field Equations (3.24)-(3.27), or the Lagrangian 3.28, are 
yet to be developed. 

The role of rotational curvature of Einstein-Hilbert gravity needs to be 
quantitatively analyzed in the extended ECKS theory with spinor fields. EH 
theory is assumed here: 1) to give the horizon and the Einstein-Rosen bridge, or 
wormhole, in spacetime, but 2) to be a small correction to the torsion caused 
interactions at Planck scale. It is remarkable that the equations for torsion (3.24) 
and curvature (3.25) are so different with the torsion being independent of 
metric and gauge degrees of freedom. Zitterbewegung at Planck energy should 
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provide a scale of length/area for calculations. 
The translation symmetry of the full Poicaré group implies axial-vector 

interactions which introduce a new Gedanken phenomenology for preons 
between the GUT scale and Planck scale. The axial-vector particle is expected to 
have a large mass, 16 - 19~ 10 GeVM . Within accelerator energies axial-vector 
particle couplings to standard model particles are very small. 

The main contribution of ECKS gravity to the present preon model is that it 
leads to the Proca equation of the preon spinor field coupled to torsion field 
3.24. I tentatively propose the spinor-torsion field coupling as the dominant 
interaction in the UV limit of quantum gravity. Thus there should be quantum 
states describing the preon-axial-vector system to which the information theo- 
retic arguments of Section 4 can be applied leading to the area rule 1 4BHS A= . 

Of matters not discussed in this note I refer again to [9] where substantial 
amount of phenomenological success is obtained beyond the standard model of 
cosmology, like dark matter, cosmological constant and inflation. Thermody- 
namics is another area to be studied in detail. More work is needed to clarify all 
the issues and gain consensus in the questions like field quantization, gravity and 
its full quantum version. 
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