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Abstract 
This paper analyzes the resolution complexity of a random CSP model named 
model RBmix, the instance of which is composed by constraints with different 
length. For model RBmix, the existence of phase transitions has been estab-
lished and the threshold points have been located exactly. By encoding the 
random instances into CNF formulas, it is proved that almost all instances of 
model RBmix have no tree-like resolution proofs of less than exponential size. 
Thus the model RBmix can generate abundant hard instances in the threshold. 
This result is of great significance for algorithm testing and complexity analy-
sis in NP-complete problems. 
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1. Introduction 

Constraint satisfaction problem (CSP) is originated from artificial intelligence. It 
is a very important branch in the field of artificial intelligence, and it is a prob-
lem widely studied in computer science, information science, discrete mathe-
matics and other interdisciplines. At present, a number of problems restricting 
the development of computer science, automatic control, system engineering 
and other disciplines can be modeled as CSPs. At the same time, CSPs are widely 
used in related application fields such as resource allocation, pattern recognition, 
temporal reasoning and image recognition. 

CSP is composed of a set of variables and a set of constraints. Each variable 
takes a value from the corresponding non-empty domain. The number of ele-
ments in the domain can be fixed, or change with the number of variables. Each 
constraint has a corresponding incompatible assignment set to restrict the values 
of variables appearing in the constraint. The constraint set randomly selected 
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constitutes a random instance of CSP. Given a random instance, if there exists 
an assignment to the variables satisfying all the constraints in the instance si-
multaneously, we call this assignment a solution. Usually, most of the CSPs are 
NP-complete problems. A lot of theoretical research and experimental results 
show that for many NP-complete problems we can define a control parameter 
(such as constraint density, constraint tightness, etc.). There is a critical value of 
the control parameter, below which the probability of an instance being satisfia-
ble goes to 1, and above which it goes to 0 as the number of variables approaches 
infinity. People call this phenomenon the phase transition. The critical value is a 
satisfiability phase transition point. 

Random k-SAT (k-satisfiability. Every clause of random k-SAT is randomly 
and independently generated. Each clause contains just k different variables) 
problem is a typical CSP with a fixed domain (The variable is Boolean, i.e. 0 and 
1 or T and F), and the first NP-complete problem proved by Cook. Research 
shows that when 2k = , 2-SAT is in P class [1] [2]. We can get the satisfiability 
phase transition point 1α =  (α  represents the ratio of the number of con-
straints and the number of variables). When 3k ≥ , it belongs to NP-complete 
problem [3]. Although the phase transition phenomenon has been established, it 
is hard to get the accurate phase transition point rigorously. The currently 
known upper and lower bound of the phase transition region of the 3-SAT 
problem is 4.4898 [4] and 3.52 [5], respectively. It is shown by Mertens et al. that 
the satisfiability phase transformation of 3-SAT problem occurs near 4.2667 [6] 
experimentally. In order to study the transition behavior between P and NP- 
complete problem, Monasson et al. [7] proposed the model ( )2 p+ -SAT mix-
ing with 2-clause and 3-clause. Here, [ ]0,1p∈ , and in m clauses of the model 
there are ( )1 p m−  2-clauses and pm  3-clauses. Obviously, when 0p = , it is 
a 2-SAT problem, and when 1p = , it is a 3-SAT problem. Later, It is rigorously 
proved by Achlioptas et al. [8] that when 2 5p <  the model had transition 
characteristics similar to those of 2-SAT problem, and we could get the exact sa-
tisfiability phase transition point. When 2 5p ≥ , the model has transition cha-
racteristics similar to those of 3-SAT problem, and we can’t get the exact phase 
transition point. This means that phase transition characteristics of model 
( )2 p+ -SAT are determined by the ratio of 2-clauses and 3-clauses. 

Model RB (Revised B) is a nontrivial random CSP with growing variable do-
main. Specifically, in order to overcome the trivial gradual unsolvability of mod-
el B in the standard model CSP [9] [10] (that is the binary model CSP), Xu et al. 
proposed a new CSP model, i.e. model RB [11]. This model is a modification of 
model B in terms of domain of variables and the number of constraints, which 
avoids model B’s disadvantage of failure to generate hard instances. In [11], it 
has been strictly proved that phase transitions do exist for model RB as the 
number of variables approaches infinity. Moreover, the phase transition points 
are also known exactly. Later, Xu et al. theoretically proved that random in-
stances generated by model RB in phase transition region had the exponential 
tree-like resolution complexity, which meant that these instances were almost all 
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hard [12]. Later, an experiment also proved that near the phase transition thre-
shold the hardness of finding solutions grows exponentially with the problem 
size [13]. Therefore, hard instances generated based on model RB are widely ap-
plied in all kinds of algorithm competitions such as CSP and SAT [14] as 
benchmarks, in order to test the performance of the algorithm. Since it was 
proposed, in a relatively short period of time model RB drew the attention of 
some scholar and was studied by them. Zhao et al. analyzed how the phase tran-
sition region of model RB became an exact phase transition point under the fi-
nite-size scaling effect, and gave the lower bound of scaling window [15]. Based 
on model RB, Shen et al. proposed a new model CSP, i.e. model d-k-CSP, and 
proved that the model also had the exact satisfiability phase transition pheno-
menon, and could generate a large number of hard instances [16] [17] [18]. In 
terms of the algorithm, Zhao et al. introduced the cavity method in statistical 
physics, and successively proposed two kinds of random CSP solved by the mes-
sage passing algorithm guided by Belief Propagation and Reinforced Belief 
Propagation algorithm generated by model RB with a large domain [19] [20] 
[21]. Recently, Yuan et al. proposed RSA (Revised Simulated Annealing Algo-
rithm) and GSA (Genetic-simulated Annealing Algorithm) to solve random in-
stances of model RB [22].  

Inspired by model ( )2 p+ -SAT, Zhao et al. proposed a random CSP model 
mixed with constraints with different lengths (The constraint length is defined as 
the number of variables contained in the constraints), i.e. model RBmix. Interes-
tingly, the phase transition behavior of model ( )2 p+ -SAT is determined by 
the proportion of 2-clauses and 3-clauses, while the phase transition phenome-
non of model RBmix has nothing to do with the number of constraints with dif-
ferent lengths. It has been proved that model RBmix mixed with constraints with 
different lengths has the exact satisfiability phase transition phenomenon similar 
to that of model RB, and the phase transition points can be located exactly. We 
know that if the new model CSP has the exact satisfiability phase transition 
phenomenon and can generate a large number of hard instances, the model has 
important significance for testing of CSP algorithm. For model RBmix, we use the 
resolution method (its general form is for logic formula) to encode random in-
stances generated by model RBmix into the conjunctive normal form in SAT 
problem, i.e. CNF formula. By using five lemmas, we prove a famous theorem 
about the resolution length. Therefore, it is proved that the random instances 
generated by model RBmix almost have no resolution complexity for which the 
resolution length is less than the exponential size. This shows that model RBmix is 
hard for algorithms based on resolution, so model RBmix can generate a large 
number of hard instances in the phase transition region. It is proved in this pa-
per that almost all instances of model RBmix have no tree-like resolution proofs of 
less than exponential size. Thus, we not only introduce new families of random 
CSP instances hard to solve, which can be useful in the experimental evaluation 
of CSP algorithms, but also propose a CSP model with both many hard instances 
and exact phase transitions. 
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2. Model RBmix 

The random instance of model RBmix is composed of the variable set 
{ }1 2, , , nx x x  and the constraint set { }1 2, , , mC C C , where lnm rn n=  
( 0r >  is called the constraint density). Each variable ix  takes values from its 
corresponding domain iD . Here, iD d nα= =  ( 0α >  is a constant), which 
means that the domain of variables grows polynomially with the variable num-
ber n. We divide m constraints into   groups. Each group contains 

lni im r n n=  constraints. Here, 1 ii r r
=

=∑  . The constraints in each group are  

generated in the following way. 
Step 1: im  ik -ary constrains are selected randomly and repeatably ( 2ik ≥ ). 

Each ik -ary constrain is composed of ik  different variables selected randomly 
from n variable sets. Here, ik  is called the constraint length. 

Step 2: For each ik -ary constrain, ikpd  assignments are selected randomly 
from ikd  assignments without repetition to form the corresponding incompat-
ible assignment set and limit values of ik  variables. Here, ( )0,1p∈  is called 
constraint tightness. 

If random instances generated by model RBmix have a group of assignments of 
n variables, so that all ik -ary constrains are satisfied at the same time, then the 
group of assignments is a solution. If the assignments of ik  variables do not 
belong to an incompatible assignment set, this constraint is satiable. Otherwise, 
it is unsatisfiable. 

Thus, model RBmix is a promotion of model RB on the constraints. In model 
RB, all constraints are k-ary constraints, which means that the constraint length 
is fixed. Model RBmix is composed of constraints with different lengths. Appar-
ently, model RB is a special circumstance of model RBmix when 1= . Therefore, 
the constraint composition of model RBmix is more generally representative. 

Assume that ( )Pr SAT  is the probability of random instance satisfaction of 
model RBmix. Let { }1 2min , , ,k k kκ =



 . Then we’ve proved that the following 
two theorems hold. 

Theorem 1 Assume that 
( )ln 1sr p
α

= −
−

. If 1α
κ

>  and 11p
κ

≤ − , then: 

( )
1 if

lim Pr SAT .
0 if

s

n
s

r r
r r→∞

<
=  >

                     (1) 

Theorem 2 Assume that 1 r
sp e

α
−

= − . If 
1α
κ

>  and 
ln

r
k

α
≥ , then: 

( )
1 if

lim Pr SAT .
0 if

s

n
s

p p
p p→∞

<
=  >

                    (2) 

From the above two theorems, we can know that under the condition that the 
domain of variables is not too small ( 1α κ> ), as long as the constraint tight-
ness is low enough or the constraint density is big enough ( lnr kα≥ ), when 
n →∞ , with the continuous increase of r or p, The probability of a random in-
stance generated by model RBmix being satisfiable suddenly changes from 1 to 0, 
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which means that model RBmix has the satisfiability phase transition phenome-
non, and it can get the accurate phase transition point. Therefore, model RBmix is 
a mixed random CSP with accurate phase transition and a large domain. 

3. Main Results 

Assume that I  is a random instance generated by model RBmix. We can get the 
following theorem. 

Theorem 3 If sp p> , then I  almost has no resolution proof of the length 
less than ( )2 nΩ . Here, ( ) ( ) ( ){ }: Constant 0,n f n c f n cnΩ = > ≥ . 

As we know, for the unsatisfiable random instance I, there must be the shortest 
resolution proof which can reason out empty clauses. Its length is the lower 
bound of time consumed by any algorithm based on the resolution principle. 
Therefore, from Theorem 3 we can know that the solution algorithm of unsatis-
fiable instances of model RBmix has the complexity of exponential size. Thus in the 
phase transition region model RBmix can generate a large number of hard in-
stances. 

4. Proof of Theorem 3 

This paper uses the resolution method to analyze the complexity of model RBmix. 
The general form is CNF formula for SAT problem. The so-called CNF formula 
refers to the conjunction expression ( ∧ ) of clause (disjunctive form ∨  of posi-
tive literal l  or negative literal l¬ ). Therefore, we first must encode the ran-
dom instance I  of model RBmix according to a certain rules into CNF formula, 
then the resolution complexity of I  is the complexity of the corresponding 
CNF formula. 

In model RBmix, assume that the domain of each variable ix  is 
{ }1, 2, ,iD d=  . Define the new proposition variable ijx  (Boolean). If the value 

of ix  is j  ( ij D∈ ), then Tijx = . The following three types of clauses are 
required to encode I  into CNF formula. 

(1) Clauses of the domain： Each variable ix  is taken from its domain iD , 
i.e. 1 2i i idx x x∨ ∨ ∨ ;  

(2) A value clause at most: Ensure that each variable takes a value from its 
domain at most at a time, i.e. 

1 2ij ijx x¬ ∨ ¬ , 1 2, ij j D∈  and 1 2j j≠ ; 
(3) Conflicted clause: It is used to remove the assignment in the uncoordi-

nated set, so that the constraint is satisfied. For example, { }3,5  is an element in 
the uncoordinated assignment set limiting the value of 1x  and 2x . Then the 
conflicted clause is 13 25x x¬ ∨¬ . 

Definition 1 (Length of the clause) The number of variables appearing in 
Clause C  is called length of C , written as ( )Cω . 

Definition 2 (Length of CNF) The maximum length of all the clauses in F of  
CNF formula F is called the length of F, i.e. ( ) ( ){ }

F
F max

C
Cω ω

∈
= . 

Definition 3 (Resolution) The clause sequence 1 2, , , tC C Cπ =   ( tC C= ) is 
called a resolution in which C  is derived from F. If and only if each iC  be-
longs to F, or iC  is derived from jC  and kC  (1 ,j k i≤ ≤ )in accordance with 
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the rule jC A x= ∨  and kC B x= ∨ ¬  ⇒ iC A B= ∨  (among them A and B 
are clauses, x is propositional variable), t is its length. 

Definition 4 (Derived length) The length for C  is derived from F is the 
minimum length of π , written as ( )F | Cω − , i.e. 
( ) ( ){ }{ }F | min max

C
C C

π π
ω ω

∈
− = .  

Definition 5 (Resolution) The resolution in which an empty clause (expressed 
with  ) is derived from F in CNF formula is called the resolution of F, written 
as ( )Res F , i.e. ( ) { }1 2Res F min : , , , tt C C C

π
π= =  . In which, tC =  . Then 

( )Res F  is the resolution complexity of formula F . 
We consider the clause in π  as a node. If iC  is derived from iC  and kC , 

the edge is used to connect iC  and jC , iC  and kC . If the resulting graph 
Gπ  is a tree, π  is called the tree-like resolution. 

For the unsatisfiable formula F, there must be the shortest resolution proof 
deriving  . Its length is the lower bound of time consumed by any algorithm 
based on the resolution principle. 

Ben-Sasson and Wigderson gave the following theorem used to prove the 
lower bound of the resolution length of CNF formula [23]. 

Theorem 4 Assume that F is a CNF formula with n variables, then we have: 

( ) ( ) ( )|Res F 2 F Fω ω− −≥  .                          (3) 

We want to use Theorem 4 to prove the important conclusion Theorem 3 in 
this paper. We need to use the following five lemmas. 

Before giving Lemma 1, we first give the following definition. 
Definition 6 (Subproblem) Assume that I is an instance of a CSP, then the in-

stance composed of subsets of constraint set in I is called a subproblem of I. 
Lemma 1 Assume that I is a random instane generated by model RBmix, then 

0 1c∃ < < , so that almost every subproblem with the size of s cn≤  in I has 

0 lnm s nβ=  ( ( )6 ln 1 pβ α κ= − − ) constraints at most. In 0m  constraints, 
the length of 0 lni

im s nβ=  constraints is ik , in which 1, 2, ,i =    and 

1 iiβ β
=

= ∑  . Here, the subproblem with the size of s refers to s  variables 
contained in the subproblem of I. 

Proof Assume that A = {I has at least 0 lnm s nβ=  constraints and a sub-
problem with the size of s cn≤ }. We prove that ( )lim Pr 0

n
A

→∞
= . 

Let { }1 2max , , ,k k kκ′ =


 , then we have 

( )

( )

0

0

1

1 1

ln ln

1
ln ln

1

ln 1 ln 1

1

Pr

ln
ln

.

i
i

i

i i
i

mk
ms s

n m k
s cn i n

s ns k s n

s cn
s ns s n

s cn
sn n

s cn

C
A C C

C

en ern n s
s s n n

en ern s
s s n

er se
n

β β

β κ β

β κ β

β

β

β

=

≤ ≤ =

≤ ≤

′

≤ ≤

′− −

≤ ≤

∑

 
≤  

 

    ≤     
    

    ≤     
    
     ≤        

∑ ∏

∑

∑

∑





              (4) 

For the sufficiently large n, here exists a constant 1 0c > , so that  
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( ) 1

ln
1 ln ln

n
r cere en n

β
β β

β
+ − 

= < 
 

.                    (5) 

Let ( )
12

11
2

c

c e κ β
+

−
′−< , then 

( )
( )1

ln 1 ln 1
1 ln 1

2
1

n n
ncer se n c

n n

β κ β
κ β

β

′− −
′− −    ≤ ≤  

  
.            (6) 

thus 

( ) 2 2
1

1Pr
s

s cn

cn cA
nn n≤ ≤

 ≤ ≤ = 
 

∑ .                    (7) 

Therefore, ( )lim Pr 0
n

A
→∞

= . 
Before giving Lemma 2, we first give the following definitions. 
Definition 7 (i-constraint assignment group) Assume that i constraints con-

tain variable x. If assignments are made for variables except x in i constraints, 
the such assignment group is called i-constraint assignment group, written as 

ixT . 
Definition 8 (flawed i-constraint assignment) The assignment of given varia-

ble x is xDσ ∈  ( xD  is the domain of x). If ( ), ixTσ  makes at least one con-
straint in these i constraints unsatisfiable, variable x’s assignment σ  is called 
flawed for ixT . Further, if any assignment of variable x is defective for ixT , ixT  
is called a defective i-constraint assignment group. 

Lemma 2 Assume that I is a random instance generated by model RBmix, then 
for 3 lni nκβ≤  defective ixT  almost may not exist in I. In which, in these i 
constraints the length of 3 lni nτ τκβ=  constraints is kτ . Here, 

=1i iττ =∑  . 
Proof Assume that A = {I has a defective i-constraint assignment group ixT }. 

In which, 3 lni nκβ≤ , which means that it is proved that ( )lim Pr 0
n

A
→∞

= .  
Next, let B = { ixT  is not flawed}, then we have  

( ) ( )
3 ln =3 ln

Pr Pr
i n i n

B B
κβ κβ≤

≤ .                 (8) 

Bσ  = {σ  is not flawed for ixT , xDσ ∈ }. It’s worth noting that for model 
RBmix { }1, 2, ,xD d=  ， d nα= , so 

( ) ( )

( ) ( )

1 2

1
1 2

1

Pr 1 Pr

1 1 Pr

d

d

d

B B B B

C B B Bσ σ
σ

σ

−

=

= −

= − − ⋅∑

 



              (9) 

Here,  

( )1 2
1

Pr

k

k

k

k

i
d
pd

pd
d

C
B B B

C

ττ

τ

τ

τ

σ

σ
τ

−

=

 
 =   
 

∏


 .                 (10) 

because 

( ) ( )
( )

1
=

1

k

k

k

k

d k k k k
pd

k kpd
d

C d pd d pd

d dC

τ
τ τ τ τ

τ

τ τ τ
τ

σ σ

σ

− − − − +

− +
 ,              (11) 
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And for 0,1, ,j σ= 
, we have 

( )
( )

1
1

1

k k

k

d pd j
p

d j

τ τ

τ

− − +
≤ −

− +
.               (12) 

From 
( )6 ln 1 p
αβ

κ
= −

−
 in Lemma 1, 

( ) ( ) ( )

( ) ( )

3 ln
1 2

1

ln
22ln 1

Pr 1 1

                       1 ,

i n

n
p

B B B p p

p n

τσ σκβ
σ

τ

ασασ

=

−−
−

 ≤ − = − 

= − =

∏




         (13) 

Thus, 

( ) ( ) 22 2

1
Pr 1 1 1

d
d

n
dB C n n e

αασ α
σ σ

σ

−− − −

=

 
≤ + − ⋅ = − ≤  

 
∑ .         (14) 

Because the maximum choices of i-constraint assignment group ixT  are as 
follows 

( ) ( ) ( )1 1 2 21 1 1k i k i k ii
mnC d d d− − −

 

  

And 3 lni nκβ≤ , so when n is sufficiently large, constant 2 0c > . Let 
( ) ( ) ( )

( )

( )

1 1 2 2

1

2
2

1 1 1

1

ln
3 ln

1 3 ln

ln

ln
3 ln

e

i

k i k i k ii
m

k i
i
rn n

n
n

c n

nC d d d

nC d

ern nn n
n

τ
τ

κβ
α κ κβ

κβ

=

− − −

−

′− ⋅

∑
= ⋅

 
≤ ⋅ 

 

<

 





                (15) 

Thus, we have 

( ) ( ) ( ) ( ) ( )1 1 2 2

2 22

3 ln
1 1 1

1

ln

Pr Pr

3 ln

n
k i k i k ii

m
i

c n n

A nC d d d B

e e n
α

κβ

κβ

− − −

=

−

=

≤ ⋅ ⋅

∑  



           (16) 

So ( )lim Pr 0
n

A
→∞

= . 
Lemma 3 Assume that I is a random instance generated by model RBmix, then 

almost any subproblem with the size of s cn≤  of I can be satisfied. 
Proof Assume that I has the unsatisfiable subproblem with the size of s cn≤  

in I is, and the minimum unsatisfiable subproblem is 1I . According to Lemma 1, 

1I  contains lns nβ  constraints at most. So 1I  at least contains one variable x 
with the maximum degree of ln nκβ  (the degree of variable is defined as the 
number of constraints containing the variable). After x and constraints contain-
ing x are removed, the remaining subproblem 2I  can be satisfied ( 1I  is the 
smallest unsatisfiable subproblem). Thus, 2I  has the assignment group ixT  
( lni nκβ≤ ), so that 2I  can be satisfied, but 1I  is unsatisfiable. In means that 
for xDσ∀ ∈  ( ), ixTσ  cannot make 1I  satisfiable, so ixT  is defective. There-
fore, for lni nκβ≤  I has a flawed ixT , which is contradictory with Lemma 2, 
so the assumption is not established. Thus, Lemma 3 is proved. 
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Before giving Lemma 4, we need to give the following definition. 
Definition 9 (Complexity) Assume that I is a random CSP instance. Encode I 

into CNF formula F. Assume that F’s clause C is derived from sequence 

1 2, , , tC C Cπ =   ( tC C= ). We can say that the number of variables contained 
in the smallest scale of subproblems deriving C is the complexity of the clause C, 
written as ( )Cµ . 

Lemma 4 Assume that I is a random instance generated by model RBmix. En-
code I into CNF formula F. Then almost any inversion of F has a clause which 
satisfies ( )2cn C cnµ≤ ≤ . 

Proof From Lemma 3 we can know that ( ) cnµ > . We establish a binary 
tree with the node of clause. In which,   is the root node, the child nodes are 
two clauses with which we can reason out  , until the leaf node. Obviously, the 
clause complexity of leaf node ( )leafCµ κ≤ . From root node to leaf node, be-
cause the complexity of each clause does not increase, ∃  clause 0C  makes 
( )0C cnµ ≥ , and it can be derived that 1C  and 2C , two clauses of 0C  (child 

nodes) satisfy 1C cn≤  and 2C cn≤ . From ( ) ( ) ( )1 2 0C C Cµ µ µ+ ≥ , In 1C  and 

2C  a C  satisfies ( )2cn C cnµ≤ ≤ . 

Lemma 5 ( ) ( )lim Pr 1
6 2n

cn cnC C cnω µ
→∞

 
≥ ≤ ≤ = 

 
. 

Proof Assume that I is a random instance generated by model RBmix. Encode I 
into CNF formula F. Assume that 1I  is the smallest subproblem of F | C− , and 

( )2cn Cµ≤ . From Lemma 1 we can know that 1I  contains lncn nβ  con-
straints at most. These lncn nβ  constraints contain up to lncn nκβ  variables. 
So the maximum number of variables with the degree higher than 3 ln nκβ  is 

3cn . Next, we will prove that these variables are in clause C. 
Assume that variable x whose degree is not greater than not 3 ln nκβ  is not 

in clause C. Assume that 2I  is the remaing subproblem after x and constraints 
containing x are removed. Because 1I  is the smallest subproblem, clause C 
cannot be derived from the corresponding CNF formula of 2I . So any assign-
ment of variable x does not meet the corresponding CNF formula of 1I , and 

ixT  is defective. This is contradictory with Lemma 2. So variables whose degree 
is not greater than 3 ln nκβ  are all in clause C. 

So ( ) 2 3 6C cn cn cnω ≥ − = . The conclusion is established. 
Finally, from Lemma 5 and Theorem 4, we can get Theorem 3. That is unsa-

tisfiable random instances generated by model RBmix have no resolution proof 
whose complexity is less than the exponential size. 

5. Conclusion 

In this paper, we analyze the resolution complexity of a mixed constraint satis-
faction problem named model RBmix. It is theoretically proved that unsatisfiable 
random instances generated by model RBmix almost have no complexity whose 
resolution length is smaller than the exponential size. As a result, based on the 
resolution algorithm the random instance of model RBmix has complexity of ex-
ponential size. The conclusion shows that model RBmix with different length 
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constraints not only has accurate satisfiability phase transition phenomenon, but 
also can generate a large number of hard instances in the phase transition re-
gion. Therefore, model RBmix is a large-domain nontrivial random constraint sa-
tisfaction problem with mixed constraints and accurate phase transition. In the 
later work, we can also verify the hardness of model RBmix in the experiment, and 
further study the solving algorithm. 
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