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Abstract

We introduce in this paper cryptographic protocols which use combinatorial group
theory. Based on a combinatorial distribution of shares we present secret sharing
schemes and cryptosystems using Nielsen transformations. Nielsen transformations
are a linear technique to study free groups and general infinite groups. In addition

the group of all automorphisms of a free group F, denoted by Aut(F), is generated

by a regular Nielsen transformation between two basis of £ and each regular Nielsen
transformation between two bases of Fdefines an automorphism of F.
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1. Introduction

This paper is located in the area of group based cryptography. A cryptographic protocol
consists of the collection of rules, formulas and methods to handle a cryptographic task.
In cryptology it is common to call the parties who want to communicate privately with
each other Alice and Bob.

The traditional cryptographic protocols, both symmetric key and public key, such as
the RSA algorithm, Diffie-Hellman and elliptic curve methods, are number theory
based. Hence, from a theoretical point of view, they depend on the structure of abelian
groups. Although there have been no successful attacks on the standard protocols, there
is a feeling that the strength of computing machinery has made the techniques less
secure. As a result of this, there has been an active line of research to develop and

analyse new cryptographic protocols, as for example cryptosystems and key exchange
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protocols, based on non-commutative cryptographic platforms. Up to this point the
main sources for non-commutative platforms have been nonabelian groups. For an
overwiev about mathematical cryptography see [1] and especially for a book about
non-commutative group based cryptography see [2].

Important along the line of cryptographic protocols are secret sharing protocols.
These consist of methods to distribute a secret among a group of users by giving a share
of the secret to each. The secret can be recovered only if a sufficient number of users
(but perhaps not all) combine their pieces. There are many different motivations for the
secret sharing problem. One of the most important is the problem of maintaining
sensitive information. There are two crucial issues here: availability and secrecy. If only
one person keeps the entire secret, then there is a risk that the person might lose the
secret or the person might not be available when the secret is needed. Hence it is often
useful to utilize several people in order to access a secret. On the other hand, the more
people who can access the secret, the higher the chance the secret will be leaked. By
sharing a secret in a threshold scheme the availability and reliability issues can be
addressed. The paper by C. Chum, B. Fine and X. Zhang [3] contains a wealth of
information on secret sharing schemes in general and managing an access control
group.

This paper is organized as follows. We first describe secret sharing protocols and a
combinatorial distributions of shares, which are given by D. Panagopoulos in [4]. After
introductory definitions we start with a secret sharing scheme using directly the
combinatorial distribution of shares. Based on this we present two schemes in which we
apply regular Nielsen transformations in connections with faithful representations of
free groups and the Nielsen reduction theory. We also modify the secret sharing
schemes to a private key cryptosystem and finally Nielsen transformations are used for
a public key cryptosystem which is inspired by the ElGamal cryptosystem. The new
cryptographic protocols are in the dissertation of A. Moldenhauer [5] under her
supervisor G. Rosenb-erger at the University of Hamburg. Thus, parts of this paper are
from [5].

2. Preliminaries for the Newly Developed Cryptographic
Protocols

A (n,t)-secret sharing protocol, with n,teN and t<n, is a method to distribute a
secret among a group of 2 participants in such a way that it can be recovered only if at
least ¢ of them combine their shares. Hence any group of t—1 or fewer participants
cannot calculate the secret. The number ¢is called threshold. The person who distrib-
utes the shares is called dealer.

One of the first (n,t)-secret sharing schemes is introduced by A. Shamir in [6]. It
has become the standard method for solving the (n,t)-secret sharing problem.

A. Shamir uses polynomial interpolation for his (n,t)-secret sharing scheme. Let F
be any field and let (Xl, yl),(Xz, yz),---,(XI, y[) be t points in F? with pairwise
distinct X, 1<i<t.We saya polynomial g(X) over F interpolates these points if
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9(%)=Y;» 1<i<t. A. Shamir’s secret sharing scheme is based on the following
theorem.

Theorem 1. [7]

Let I beany field and let x;,X,,-:-,X, be #pairwise distinct elements of F and let
Y., ¥+, Y, be any elements of [F. Then there exists a unique polynomial of degree
less than or equal to t—1 that interpolates the #points (Xi VY ) , 1<i<t.

A. Shamir’s (n,t)-secret sharing scheme is roughly this: The dealer chooses a field
FF. The secret Sis an element in F. The dealer picks a polynomial g(X) of degree
t—1 with the secret S as constant term, that is, g(X)=S+ax+a,x*+--+a_x"",
a8 €F and a_, #0. He chooses pairwise distinct elements X,X,,---,X, €F, with
X;#20 for all 1<i<n and distributes to each of the n participants a point
(Xi (X )) as a share. By Theorem 1 any ¢ participants can determine the polynomial
g(X) (for example with Lagrange interpolation, see [7]) and hence recover the secret
S. If less than ¢ people combine their shares any element in F can be the constant
term and hence the secret. A. Shamir suggested to use F=IF, =7/pZ where pis a
large prime number.

D. Panagopoulos presents in his paper [4] a (n,t)—secret sharing scheme using
group presentations with solvable word problem. For the secret sharing schemes in the
following sections we use a combinatorial distribution of the shares, which is explained
in the paper of D. Panagopoulos.

Share distribution method explained by D. Panagopoulos.

To distribute the shares in a (n,t) -secret sharing scheme the dealer does the follo-

wing steps:

1) Calculate m :( nlj , the number of all elements, for example {a1,az,w,am},

the participants need to know for the reconstruction of the secret.
2) Let A,A,,---,A, be an enumeration of the subsets of {1,2,---,n} with t-1
elements. Define nsubsets R ,R,,-:-,R, of the set {ai, -, am} with the property.
a,eR oi¢A forj=12--mandi=12,n (1)

3) The dealer distributes to each of the n participants one of the sets R,R,,-:-,R, .
In addition to this share distribution method the new protocols in this paper are
based on combinatorial group theory and Nielsen transformations. Therefore, we
review some basic definitions concerning regular Nielsen transformations and Nielsen
reduced sets (see [8] or [9]).
Combinatorial group theory is the branch of algebra which studies groups with the
help of group presentations. A group presentation for a group G consists of a set X of

generators and a set R of defining relators on X. We write.
G=(X|R).
The group G is called finitely generated if both sets X and R are finite. The newly
developed cryptographic protocols use finitely generated free groups. Let Fbe a finitely
generated free group with free generating set X :{ Xl,XZ,---,Xq} , e N, then the
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group Fis the set of all reduced words in X **, which is defined as

X* = {xl, Xl’l, Xy, Xz’l, ey Xgs X;} , where a word is called reduced if it does not contain
subwords of the form x;'x; or x;x;*,
empty word, which is 1. The set of relators for a free group consists only of trivial

1< j<q. The identity is considered as the

relators, which are of the form w,w;" or w;'w;, with w; a word in X, thus we
denote Fby
F=(X] ).

The empty space on the right symbolized, that there are only trivial relators. For
more information about group theory see for instance [8], [9] or [10].

Let Fbe a finitely generated free group on the free generating set X = {xl, Xpytoe, Xq} ,
q=2,andlet U={u,u,,---,u }cF, t>2,with u, reduced wordsin X.

Definition 2 An elementary Nielsen transformation on U = {ul,uz,---,ul} cF is
one of the following transformations.

(T1) replace some U, by u*;

(T2) replace some U; by uu; where j=i;

(T3) delete some u; where u; =1.

In all three cases the u, for k=i are not changed. A (finite) product of elemen-
tary Nielsen transformations is called a Nielsen transformation. A Nielsen transfor-
mation is called regular if it is a finite product of the transformations (T1) and (T2),
otherwise it is called singular. The set U is called Nielsen-equivalent to the set V] if
there is a regular Nielsen transformation from Uto V.

Nielsen transformations are a linear technique to study free groups and general
infinite groups. In addition the group of all automorphisms of a free group F, denoted
by Aut(F) , is generated by a regular Nielsen transformation between two basis of F
and each regular Nielsen transformation between two basis of F defines an automo-
rphism of F; see ([8], Korollar 2.10).

Definition 3. A finite set U in F is called Nielsen reduced, if for any three elements
v, V,,V, from U™ = {ul, U Uy, Uyt e, Uy, ufl} the following conditions hold:

(NO) v, #1;

(N1) vyv, #1 implies |V1V2| = |V1|,|V2

(N2) vv,#1 and v,v, #1 implies VlV2V3|>|V1|—|V2|+|V3|.

Here |V| denotes the free length of ve F .

Proposition 4. ([8], Theorem 2.3) or ([9], Proposition 2.2)

>

If U={u,u,,-,U,} is finite, then U can be carried by a Nielsen transformation
into some V'such that Vs Nielsen reduced.

For the secret sharing schemes based on Nielsen transformations we will only use
regular Nielsen transformations. We agree on some notations.

We write (T1), if we replace U, by u' and we write (T 2),.,
by uu;. If we want to apply #times one after the other the same Nielsen transfo-

if we replace u,

rmation (T2) we write [(TZ)”] and hence replace U, by uu'. In all cases the
u, for i=k arenotchanged.

Corollary 5. ([8], Korollar 2.9)
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Let Fbe a free group with basis Xand let Ube a subset of X which is Nielsen reduced.
Then it is

X*AU)=X"nU*. ()

+1

Especially, if Uis also a basis for £ then X =U
Theorem 6. ([8], Satz 2.6)

Let Ube Nielsen reduced, then (U) is free on U.

For the next lemma we need some notations. Let w=1 be a freely reduced word in

X. The initial segment s of w which is “a little more than half” of w (that is,

%|W|<|S|S%|W|+l) is called the major initial segment of w. The minor initial

segment of w is that initial segment s’ which is “a little less than half” of w (that is,
%|W| -1<ls|< %|W| ). Similarly, major and minor terminal segments are defined.
If the free length of the word wis even, we call the initial segment s of w; with

|s| = %|W| the left half of w. Analogously, we call the terminal segment s’ of wwith

=] the right half of

Let {Wl, W,y Wm} be a set of freely reduced words in X; which are not the identity.
An initial segment of a w=symbol (that is, of either W, or W', which are different
w-symbols) is called isolated if it does not occur as an initial segment of any other
w-symbol. Similarly, a terminal segment is isolated if it is a terminal segment of a
unique w-symbol.

Lemma 7. ([10], Lemma 3.1)

Let M ={w,W,---,W,} be a set of freely reduced words in X with w; =1,
1< j<m. Then M is Nielsen reduced if and only if the following conditions are
satisfied:

1) Both the major initial and major terminal segments of each W, e M are isolated.

2) Foreach w, e M of even free length, either its left half or its right half is isolated.

There are different problems known in combinatorial group Theory, for example:

Theorem 8. ([8], Satz 1.9) Isomorphism problem in free groups:

Let X and Y be two sets. Let G =<X| > and H =<Y| > be two free groups on X
and Y, respectively. The free group G is isomorphic to the free group A if and only if
X]=N].

Problem 9. Word problem:

Let G= (X |R> be a presentation of a group and geG a given word in X
Determine algorithmically (in finitely many steps) if g represents the identity or not.

A further problem, which is a more general problem than the word problem and is
needed for some of the developed cryptographic protocols based on combinatorial
group theory, is the membership problem or also called extended word problem.
Problem 10. Membership problem:

Given a recursively presented group G, a subgroup H of G generated by h,h,,--- h,
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and an element g € G, determine whether ornot geH .

A related problem (to the membership problem) is the constructive membership
problem.

Problem 11. Constructive membership problem:

Given a recursively presented group G, a subgroup H of G generated by h,h,,--- h,
and an element h e H , find an expression of 4in terms of h,h,,---,h, .

Theorem 12. ([8], Satz 1.9) Isomorphism problem in free groups:

Let X and Y be two sets. Let G =<X| > and H =<Y| > be two free groups on X
and Y, respectively. The free group G is isomorphic to the free group A if and only if
X|= ]

Furthermore, we introduce a linear congruence generator because it is also used for
the cryptosystems in this paper.

For neN let Z
residue classin Z, for aninteger £ is denoted by /7 (see also [1]).

Definition 13. [1]

Let neN and B,7€Z,. A bijective mapping h:Z, 6 —7Z, given by

'=7/nZ be the ring of integers modulo 2. The corresponding

n

X fX+7 is called a linear congruence generator.

Theorem 14. [1] (Maximal period length for n=2", meN)

Let neN, with n=2", m>1 and let B,ye€Z such that h:Z 6 —>Z,, with
X X +7 , is a linear congruence generator. Further let « € {O,l,---,n -1} be given
and X, =a, X, =h(X), X;=h(x,), - .
Then the sequence X, X,,X,,--- is periodic with maximal periodic length n=2" if
and only if the following holds:

1) B isodd, consequently S 0.

2)If m>2 then B=1(mod4).

3) y isodd, consequently 7#0.

3. A Combinatorial Secret Sharing Scheme

Now we present a (,t)-secret sharing scheme, whereby the secret is the sum of the
multiplicative inverse of elements in the natural numbers. For the distribution of the
shares the dealer uses the method by D. Panagopoulos described in Section 2.

The numbers 1 and ¢ are given, whereby 1 is the number of participants and ¢is the
threshold.

1) The dealer first calculates the number m = (t 4 J .

2) He chooses m elements &,,a,,-:-,a, € N. From these elements he constructs
analogously as in Section 0 the sets R, R,,-:-, R, . The secret Sis the sum
21
S:= Z— eQ". 3)
i=1 &
3) Each participant p;, getsoneshare R, 1<i<n.
If ¢ of the n participants come together they can reconstruct the secret while they first
combine their ¢ private sets R and get by construction the set R={a,,a,, -, a,} .
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The secret is the sum of the inverse elements in the set R, that is

mo1
S= |Z:1:a_. (4)

This cryptographic protocol is summarized in Table 1.

If the dealer needs a special secret Se@Q he gives every participant one more
element xe@Q ineach R,,with
S
5
The participants get S by multiplying the reconstructed secret Swith x.

©)

X=

Security 15. Each element a; is exactly contained in N— (t—1) subsets. Hence for
each j=12,---,m the element a; is not contained in t-1 subsets from
{Rl, Ry, Rn} . As a consequence, a;
t—1 arbitrary sets from {Rl, R,,--, Rn} are combined, there exist a j such that the

Is in each union of t subsets. Otherwise, if just
element a; is not included in the union of this sets.

Table 1. Summary of the combinatorial (n,t)-secret sharing scheme.

(n,t) -secret sharing scheme

Dealer Participants p,, p,,---, P,

n
Calculate m= .
t-1

Choose a,a,,~--,a,€N.
Construct sets R, <{a,,a,,--,a,} with share distribution
method given by D. Panagopoulos;

it is \RJ:Hj} for j=1,2,--,n.

Distribute shares to the participants.

t participants combine their shares and thus get

the set {al,az,n-,am} .
The secret is

S=

i=1

BRI
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If just one element a; is absent, the participants do not get the correct sum §, and
hence cannot compute the correct secret.

Remark 16. We realize that the share distribution method by D. Panagopoulos is
also given as a special case by M. Ito, A. Saito and T. Nishizeki in [11]. In [5] it is shown
that if the method in [11] is used to generate a (n,t)—secret sharing scheme then the
same share distribution method as by D. Panagopoulos is described. M. Ito, A. Saito
and T. Nishizeki use a multiple assignment scheme, which is a method to distribute to
each participant more than only one share, together with a (m,m) -secret sharing scheme.
Thus, the share distribution method by D. Panagopoulos is a special case of paper [11].

In addition, in [5] it is shown in detail, that the purely combinatorial secret sharing
scheme is very similar to a scheme, which J. Benaloh and J. Leichter obtain if they
realize a (N,t)-secret sharing scheme using minimal CNF-formula, described in their
paper [12].

Remark 17. It is important in terms of practicability, that the dealer calculates and
distributes the shares for the participants long before the secret is needed by the
participants. Hence, the dealer has enough time to execute the share distribution
method and his computational cost should be of no consequence for the cryptographic
protocol. If t participants reconstruct the secret, they add up only m elements, which is
feasible in linear time.

Example 18. We perform the steps for a (4,3) -secret sharing scheme. It is n=4
and t=3

The dealer follows the steps:

1) He first calculates m = n = 4 =6.
t-1 2

2) The dealer chooses the numbers & =2,a,:=1a,:=24a, =8, a,:=4 and
ag = 2. The secret is

)

i=1 a

(a) The six subsets with size 2 of the set {1,2,3, 4} are

A={L2}, A={13}, A={l4),

A ={2,3}, A={24}, A={34}.
With help of the A the dealer gets the sets R,R,,R;, and R,, which contain

elements from {ai,---,ae} . He puts the element a; for which 7is not contained in the
set Aj for i=1---,4 and j=1.--,6,intotheset R ,thusitis:

le ALALA =R ={a,8,3),
2¢ A AL A = Ry ={2y,35,8,
3¢ AL AL A = R =(a,8;,8),
A4¢ A A A =R =1{3,3,,3,).
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3) The dealer distributes the set R, to the participant p;,for i=1,---,4.
If three of the four participants come together, they can calculate the secret S. For
example the participants p,, p, and p, hold the set
R:=R, UR, UR,
={a,,8,8,} U{8,,8;,8) U{a, a8
={a1,a2,a3,a4,a5,a6},

and hence get the secret

S=Zi=§-mm@eﬁ

4. A Secret Sharing Scheme Using a Regular Nielsen
Transformation

In this section we describe a (n,t) -secret sharing scheme extends the ideas in Section 3
by using Nielsen transformations. We consider free groups as abstract groups but also

as subgroups of the special linear group of all 2x2 matrices over Q, thatis,
ab
SL(2,Q)= c d |a,b,c,d eQandad-bc=1;.

We use the special linear group over the rational numbers because these numbers

can be stored and computed more efficiently on a computer than irrational numbers.

Let F be a free group in SL(Z,Q) of rank m:= [tnlj' The dealer wants to

distribute the shares for the participants as described in Section 2. The shares will be
subsets of a free generating set of the group F (in an abstract and an explicit version).
The numbers 1 and tare given, whereby 1 is the number of participants and ¢is the

threshold. The dealer does the following steps:
1) He chooses an abstract free generating set X for the free group F of rank

n
m:= , that is
t-1

He also needs an explicit free generating set A4, that is

F=(M|) withM:={M,M,,--,M_} 7)

F=(X]) with X i={X,%,, X, }. (6)

and M, eSL(Z,Q).
2) With the known matrices in the set A/ he computes the secret

s=Y 1 cQ witha, =tr(M,)cQ, (8)
j:1|aj|

tr(M») is the trace for the matrix M. =| b eSL(2,Q), thatis, tr(M;)=a+d.
! e d '

If the dealer needs a special secret he can act as in Section 3 described.
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3) The dealer constructs the shares for the participants in the following way:

(a) He first applies a regular Nielsen transformation simultaneously for both sets X
and Mto get Nielsen-equivalent sets Uand Nto X and M, respectively (see Figure 1).

The elements Uu; are words in X and the elements N, are words in M. Hence, it is
N, eSL(2,Q).

(b) The dealer now uses the method of D. Panagopoulos to split U/ and N and to get
the shares (Ri,S j) for the participants with R, cU and S;=N.

4) The dealer distributes the shares.

If t of the n participants combine their parts they obtain the sets Zand N. The secret
can be recovered as follows:

1. The participants apply regular Nielsen transformations in a Nielsen reduction
manner for Uand step by step simultaneously for N. By Proposition 4 they get Nielsen
reduced sets X’={X1Q,X§2,---,X;]m} and M’:{Mfl,Mf2 ,---,M,f;m} with
6,6, € {+1,-1}, see Figure 2.

Because of Corollary 5 it is X =X"" and M™ =M"", respectively. Hence,
(X!, X5, Xp,) differs to (X, X,,--+,X,) just in the position order and inverses. That
means the set X' is the set Xup to inverses. The same is true for M’ and M . Thus,
itis X'={x1,x2,~-,x7| andalso M'={M2 M2 ..M} with ¢,5 e{l,~1}.

The cryptographic protocol is summarized in Table 2 (page 73).

Less than t participants can neither get the whole set U, which is Nielsen-equivalent to
X, nor the set N, which is Nielsen-equivalent to M.

For the calculation of the secret, the participants need the set M, because the secret
depends on the traces of the matrices M, € M . The participants need both sets U and N.
If they just have one set U or N they cannot get information about the set M.

If the set U is known, it is only known which Nielsen transformation should be done to
get the Nielsen-equivalent set X, but it is unknown on which matrices they should be
done simultaneously.

If only the set N is known, then the matrices in SL(Z,Q) are known, but nobody
knows which Nielsen transformation should be done on N to get the set M. It is also
unknown how many Nielsen transformations were used.

In the book ([13], page 247) of J. Lehner a method is given to explicitly obtain a free

X ={x1,29,..., 2} M ={My, My, ..., M,}
(21,22, .., T) (M, My, ..., My,)
regular Nielsen regular Nielsen
transformation transformation
(w1, ugy vy ) (N1, Na, ..., Nip)
U:={uy,ug,...,un} N :={Ny,No,..., Ny}

Figure 1. Simultaneously regular Nielsen transformations for the dealer.
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U:{ul,uQ,...,um} N:{Nl,NQ,...,Nm}
(’LLl,UQ,...,Um) (NI)N23"-aNm)
regular Nielsen regular Nielsen
transformation transformation
(2, ab, ..., zl) (M{, M, ..., M)
X' =A{a, 2, ... 2} M= {M{, M}, ... , M}

Figure 2. Simultaneously regular Nielsen transformations for the participants.

Table 2. Summary of the secret sharing scheme using Nielsen transformations and SL(2,Q) .

(n,t) -secret sharing scheme

Dealer Participants p,, p,,---, p,

n
Calculate m= .
t-1

Choose abstract free generating set X ={X,X,,*-*, X, }
and explicit free generating set M :={M,M,,---,M_}
with M, eSL(Z,Q) (all or almost all M, ¢ SL(Z,Z) ).

Apply simultaneously regular Nielsen transformation
(NT) on Xand M:

(%% %) (M, M, M)
INT INT

(Ut Uy ) (NG NG, N

bs N={N, N, N }.

Construct sets R, cU and S, c N with share dis-

U ={u,u,,,u

m

tribution method given by D. Panagopoulos;
I n-1 .
it is ‘RJ‘:‘SJ‘: for j=1,2,---,n.
t-1
Distribute shares to the participants.

(RuS1) >p
1

(Re.S) >p
2

(Rn ) > P,
n

t participants combine their shares and thus get
the sets Uand N.
Apply simultaneously regular Nielsen transforma-
tion (NT) on Uand M-
(U, U,) (NG NG, N
UNT UNT
(G x,) - (MLME- M)

The secret is

1 PR /
S = He@ with &} :=tr(M})e Q.

m
=1

generating set M for a free group F on the abstract generating set X = {x1 Xpyos xm} :
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Theorem 19. [13] Let F be a free group with countably many free generators

X;, Xy, -+ . Corresponding to X; define the matrix

M| —1+r17 o)
Ty
with I; €Q such that the following inequalities hold:
ra-r=3 and r>2. (10)

The group Ggenerated by {M;,M,,--} isisomorphic to £
We now present an example for this secret sharing scheme.
Example 20. We perform the steps for a (3, 2) -secret sharing scheme with the help

3
of the computer program Maple 16. Itis n=3, t=2 andhence m= (J =3.

First the Dealer generates the shares for the participants.

1) The dealer chooses an abstract presentation for the free group Fof rank 3

F=(X] ) with X = {x,%,%}.

He takes an explicit presentation

F=(M| ) withM:={M;M, M},

M, € SL(Z, Q) as above. We first mention that the inequalities (10) hold for

n =5 r, PX rb=11
and hence the set of the matrices
7 (7)2 7 45
2 M2z e
Ml = 2 = 7 y
1 ! 1 —
2 2
15 (15]2 15 221
= M2 e
M, = 2 2 _ ' |
1 _1 1 —
2 2

-11 -1+17° -11 120
'\/I3 = =
1 -11 1 -1
is a free generating set for a free group of rank 3.

2) The dealer chooses
a =tr(M,)=-7, a,:=tr(M,)=-15 a;:=tr(M,)=-22,

and hence the secret is

S:zi—z—

1 589
,-:1|aj| 2310

3) Construction of the shares for the participants:

K
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(a) First the dealer applies regular Nielsen transformations (NTs) simultaneously for
both sets X and M to get Nielsen-equivalent sets U and N to X and M, respectively.
These transformations are shown in Table 3 (see page 75) and Table 4 (see page 76).

The Dealer obtains the sets

. -1y -3 y-ly v-3 3y-ly-1y -3
U :<{u1,u2,u3}~._{x2x1 Xy Xa Xy X5 Xa Xs o XXX X X, }

and
N ={N,,N,,N,}
3452369  25661603) (80371 597401) (1132425929 8417369243
4 4 4 4 4 4
237917 1768447 |'| 5145 38243 |'| 152350279 1132425989
2 2 2 2 4 4

(b) He gets the shares (Ri,S j) for the participants with R,cU and S; N as

follows:

Table 3. Nielsen transformations (NTs) of the dealer I.

NTs theoretical set X explicit set M
7 45)\( 15 221
2 4| 2 T4 |(-11 120
{0 %, %} 7] 15 ( 1 -1
1 -2l 1 ==
2 2
7 45)( 15 221
) 2 4 || 2 T4 (11 120
(), x50 , [
. 1y sl o
2 2
15 221
L 15 109)| 2 g4 |(-11 120
(T2 b’ (—4 729} 15 [ 1 711J
-1 =
2
15 221
15 109)| "3 ~ 4 |(-8565 -63664
3 3 2 4
[(T2),.] Do’ ) (—4 —zgj’ 15 ( 799 5939j
-1 =
2
80371 597401
Lo 15 109 2 2 -8565 —63664
T2 X KM XX, , ,
(T2),, Dol xx ) [74 729j 5145 38243 [799 5939]
2 2
80371 597401
29 -109)| "4~ 4 |(-8565 —63664
Tl XX X2, X X1 ) , ,
(T), DR 00 ) [ 15] 5145 38243 [799 5939)
2 2
3452369 25661603 (80371 597401
T g T2 4 4 8565 —63664
T2 XX 002 XXX X X, , , ,
(T2), R R R 237917 1768447 || 5145 38243 (799 5939
2 2 2 2
75
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Table 4. Nielsen transformations (NTs) of the dealer II.

NTs theoretical set X explicit set M
3452369 25661603 (80371 597401
(Ta), DT 0" 00 ) sorotr 1resuar | izts i;cta (5322 fzzzg ’
2 2 2 2
3452369 25661603 (80371 507401) (1132425920 8417369243
(T2). DX T 00" 00 X0k @ eatar | izts 9965 ’7152;50279 71132125989
2 2 2 2 4 4

s m:[”j:[ﬂzg.
t-1 1

ii) The dealer chooses the elements &,,d,,8, and gets the three sets
=1l A =12 A=S)
With the help of the A the dealer gets the sets R/,R;, and R, which contain

elements from the set {&,,4,,4,}. He puts the element & ; by which 7is not contained
intheset A, for i=1,2,3 and j=12,3, into the set R'.

l¢ A A >R =1{4, 4},
2¢ A A =R =1{8,4,),
3¢AA =R ={4,4,).

Now we apply this to U and N to create the share-sets for the participants, respec-

tively:
R ={u Uz}, S ={N, N},
R, ={u,Us}, S, ={N;,N;},
Ry ={u,u,}, S, ={N;,N,},

4) The Dealer distributes to each participant a tuple (Ri 'S, ) Participant p, gets
(R.S,), p, gets (R,,S;) and p, gets (Ry,S;).

Assume the participants p, and p, come together to reconstruct the secret. They
are able to generate the sets U ={u;,U,,U,} and N ={N;,N,,N;}. The secret can be
recovered as follows.

The participants apply regular Nielsen transformations step by step simultaneously
for both sets Uand Nto get X' and M'. The steps are shown in the Table 5 (see
page 77) and Table 6 (see page 78).

7 5[ 15 22

. : 2 4 2 4 |(-11 120
With the knowledge of the set M'= , , the
7 15 1 -11
1 — 1 =
2 2

participants can reconstruct the secret easily. It is

76
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Table 5. Nielsen transformations (NTs) from the participants L.

explicit set N

NTs theoretical set U
_3452369 _25661603 80371 597401 (1132425929 8417369243
4 4 4 4 4 4
XX XXX, X2, XXX X , ,
{ X X3 : 2 5 XX % } 237917 1768447 5145 38243 _152350279 _1132425989
2 2 2 2 4 4
_3452369 _25661603 38243 _597401 1132425929 8417369243
(T1) DX 6%, X% XX, 4 4 2 4 4 4
2 237917 1768447 75145 80371 7152350279 71132425989
2 2 2 4 4 4
3452369 25661603 (38243 597401
o 4 4 2 4 5939 63664
T2 X XK XX XOXG X, , XS ,
( )“ {le 2 %% 2X3 2 } 237917 1768447 _5145 80371 [7799 —8565
2 2 2 4
3452369 25661603 ) (80371 597401
4 4 4 4 5939 63664
T1 XX X0 XXX X )
( )2 { X X3 20 % %% ZXQ} 237917 1768447 5145 38243 {7799 —8565
2 2 2 2
3452369 25661603 15 221
g T4 T3 T4 | (5939 63664
T2 X3 X XX ) )
(T2).s DX 00} 237917 1768447 4 15 (—799 -8565
2 2 2
653 9679 15 221
o T T4 | (5939 63664
(T 2) {XZX;lX;l, X;lv ijz—l} 2 4 : 2 4
45 667 [| 15 [(-799 8565
2 2
a =tr(M,)=-7, a,=tr(M,)=-15, a, =tr(M;)=-22
and hence it is
23: 1 1 1 N 1 589
:1| | 7715 22 2310°

n
In general we can use any free matrix group F of rank m:= (t 1] for a (n,t)-

secret sharing scheme as it is described in this section. The shares can be generated by

the above method and are tuples (Ri,S j) with Ry cU and S;cN. Some other

ideas for the secret Sare

KD
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S:= H|tr |orS Z|tr | (11)
S::lm[(tr(Mi))2 orS::Zm:(tr(Mi))2 or (12)

i=1 i=1
ﬁ( M, 1, M, )if misevenor S = Ztr( 7). (13)
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Table 6. Nielsen transformations (NTs) from the participants II.

NTs

(T1)

(T2)

12

(T1),

[(T2),]

theoretical set U explicit set N

653 9679) (15 221

{X X1—1X—1’X’X3X;1} 2 4 ’ 2 4 ’ 5939 63664
2 2 1820 N _a5 _@ 1 _E —799 -8565
2 2
15 221
o) 29 109\ | "2 2 |(5939 63664
LK X XX 4 15 ! 1 7@ ' —799 -8565
2
_15 221
{ N 71} 15 109 9 4 |(5939 63664
XX, Xp 0 X, Xy -4 -29 ' 1 _E ' —799 -8565
2
7 45 15 221
o 2|l 2 T4 |(5939 63664
{x%0%} LU )
1 7 1 15 1(-799 -8565
2 2
7 45)( 15 o;
{ ) XX73} 2 2 ) 4 —8565 —63664
X1 X1 X5 Xy 710 15"\ 799 5939
R I R
2 2
7 45 15 221
2 2|72 4 |(11 120
1 Xy ! !
{X1 2 XS} 1 _Z 1 _g ( 1 -1
2 2

5. Another Secret Sharing Scheme Based on Nielsen
Transformations

We explain another secret sharing scheme which arises of the protocol in Section 4. As
in the previous section, let F be a finitely generated free group with the abstract free
generating set X = {Xl, xz,---,xq} , qeN\{1l}, thatis,

F=(X] ).

For a (n,t) -secret sharing scheme the dealer chooses a Nielsen reduced set

n
U ={u,u,, - u,} <F,with m :[t j The u, are given as words in X. The secret

is the sum

S = ii, (14)

with |ui| the length of the word u, .
The dealer does a regular Nielsen transformation on the set U to get the Nielsen-

equivalent set ' (see Figure 3).
Each participant p;, 1<i<n, gets one set R cV, as in the previous secret

sharing scheme above.

78
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U:={ui,ug, ..., un}

regular Nielsen

transformation

Vi={v,v2,...,0m}

Figure 3. Regular Nielsen transformation.

If t of the n participants come together to reconstruct the secret, they combine their
shares and get the set V = {vl,vz,u-,vm} . They have to find a Nielsen-reduced set
U":={u;,uy,--,uy

m} to V. They apply Nielsen transformations in a Nielsen reducing

manner as described in [8] and [9], and get from V a Nielsen-reduced set U’. The

secret is the sum

with u/ eU’ (15)

because for each 7it is |ui’|X = |ui|x for some j (see the proof of Corollary 3.1 in [10]).
From U’ weget U by permutations and length preserving Nielsen transformations.

This (n,t)-secret sharing scheme is summarized in Table 7 (page 80).

6. A Symmetric Key Cryptosystem Using Nielsen Transformations

In this section we introduce a symmetric key cryptosystem using Nielsen transfo-
rmations. Before Alice and Bob are able to communicate with each other, they have to
make some arrangements.

We speak about public parameters also in private key cryptosystems, because these
are parameters which each person, also an eavesdropper, Eve, gets, if she looks at the
sent ciphertext. Public parameters are also elements, which Alice and Bob communicate
with each other publicly. It is also not a secret which plaintext alphabet is used for the
communication.

Public Parameters.

They first agree on the following public parameters.

1) A finitely generated free group Fwith free generating set X = {Xi, Xoyt Xq} with
q=>2.

2) A plaintext alphabet A= {ai, Q-+, 8y } with N >2.

3) An abstract free group H = (U | ) with rank(H)= |A| =N and an abstract free
generating set U = {ul, Uy, -+, Uy } ,with u;, 1<i< N, abstract letters.

4) A subset H,, = { fy, e, fszl} c Aut(H) of automorphisms of AH. It is

f:H->H andthe f, i=0,1---,2"® 1, pairwise different, are generated with the

help of 0-1-sequence (of different length) and random numbers, see ([5], Section 4.4).
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Table 7. Summary of the (n,t)-secret sharing scheme using Nielsen transformations together

with Nielsen reduced sets and free lengths of certain words.

(n,t) -secret sharing scheme

Dealer Participants p,p,,--,p

n

Calculate m=( n ]
t-1

Choose abstract free generating set
X ={x,%,x} with geN\{t} and a Nielsen
reduced set U ={u,u,,-u,}cF, u wordsin X

Apply regular Nielsen transformation (NT) on U

(u,u,,-+,u,,)
UNT
(Vlyvz‘...'\/m)

V= {vl,vz,w-,vm} .
Construct sets R,cV with share distribution

method given by D. Panagopoulos;

. n-1

it is ‘Rj‘:[ ] for j=12,--n.
t-1

Distribute shares to the participants.
R s P,

Ry p
2

% 5p

t participants combine their shares and
thus get the set V.
Apply regular Nielsen transformation
(NT) on V-
((AAAA

UNT
(u/,ug,-+,ur )
The secret is

1

5=y T

-
Uil

The set H,, is part of the key space.

5) They agree on a linear congruence generator h:Z 28 —)sz with a maximal
period length.

Private Parameters.

Now, they agree on the private parameters.

1) Alice and Bob choose an explicit Nielsen reduced set U with N elements, which
are words in X. Such systems Uare easily to construct (see Lemma 7 and Theorem 6 or
also [8] and [9]).

Now, itis K, = (U | > a free subgroup of Fwith rank M Itis U, the set of all
minimal Nielsen reduced sets with Velements in F, which is part of the key space.

red

80
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2) They use a one-to-one correspondence
A—-U

16
a;—>u; forj=1,---,N. (16)

3) Alice and Bob agree on an automorphism f_ e H,,, hence a isthe common

ut ?
secret starting point 0!6{0,1,"-,2128 —1} , with u; =§EZ2128 , for the linear
congruence generator. With this o they are able to generate the sequence
fos oo £, (with z the number of the plaintext units, which are letters from A) of
automorphisms of the set H,,, which they need for encryption and decryption,
respectively.

Remark 21. If the explicit set U ={u,,U,,---, Uy}, U, wordinX, is used, then F,
is a free subgroup of F and with the automorphism fuj € Hy, Wwith fuj R K,
the set U W = { fu, (uy), fy, (U)o fy, (uy )} is generated, which is Nielsen equivalent
to the set U.

The key space: The set U,

order) Nielsen reduced set of Fwith Nelements. The set H,, of2"*® randomly chosen

eg Of all minimal (with respect to a lexicographical
automorphism of F;.

Private Key Cryptosystem.

Now, we explain the private key cryptosystem and look carefully at the steps for Alice
and Bob.

Public knowledge: F = (X | >, X = { X, Xz,--~,xq} with > 2; plaintext alphabet
A= {ai, Ay, aN} with N >2;theset H,,;alinear congruence generator A.

Encryption and Decryption Procedure:

1) Alice and Bob agree privately on the private parameters: a set U € U,y and an
automorphism f, € H,, . They also know the one-to-one correspondence between U
and A.

2) Alice wants to transmit the message
S=ss,:8,, z21, (17)
with s, € A to Bob.

2.1) She generates with the linear congruence generator /4 and the knowledge of f.

the z automorphisms f,, f, ,---, f, , which she needs for encryption. It is u, =&,

u, =h(u), -, u,=h(u_).
2.2) The encryption is as follows.

if s, =a thens ¢ =f, (u) 1<i<z,1<t<N. (18)
Recall that the one-to-one correspondence A—U with a; > u;, for
j=12,---,N , holds. The ciphertext
C=1,(s)f,(s,)f, (s,) withs 2u <5 =a

BRRH

(19)

is sent to Bob. The ¢, are called the ciphertext units and we do not perform cancell-

ations between ¢; and ¢, and the end of each ¢; is marked, 1<i<z-1, for exa-

i+1

mple with the symbol “1”. On the one hand the ciphertext unit C; can be seen as a
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word in U, because the set U, = { fu, (Uy), fy, (U)o By, (uy )} is Nielsen equivalent

uj T
to U and fuj (Sj)é fuj (u)=:c;, for s;=a,, is an element in UfuJ . On the other
hand it can be written as a word in X, because the explicit elements in /are words in X
and so are the elements in the Nielsen equivalent set U, to U.
uj
3) Bob gets the ciphertext

C=cg,--C (20)

2
with €;, 1< j<z, words in X He knows where each ciphertext unit ¢; begins and
ends. Hence, he gets the information that he has to use zautomorphisms of Ffrom the
set H,, for decryption. He has two possibilities for decryption.

3.1.a) With the knowledge of f_, the set U = {ul,uz,---,uN }, the linear congruence
generator /2 and the number z he computes for each automorphism fui , 1=1,2,---,2,

the set
Ufui :{fui (ul)’ fui (uz)""’ fui (UN)}’ (1)
with f, (u j) written as a reduced word in X. Hence, with the one-to-one
correspondence between U and A4, he gets a one-to-one correspondence between the
letters in the alphabet A and the words of the ciphertext depending on the
automorphisms  f, . This is shown in Table 8 (page 82).
With the knowledge of the Table 8 (page 82) the decryption is as follows

ifc,=f, (u) thenc >s=a, 1<i<z, 1<t<N. (22)

He generates the plaintext message

S :Slsz...s (23)

2
with s; € A, from Alice.

3.1.b) Bob knows the Nielsen reduced set U, hence with an algorithm as for example
explained in the book ([8], page~33) he is able to write the elements ¢, as wordsin U.
With the knowledge of the automorphism f_, the set U ={u,,U,,---,Uy }, the linear
congruence generator / and the number z he gets the automorphisms f, which
Alice used for encryption of c;. Because of the fact that a one-to-one correspondence
between A and U is used and the ciphertext unit ¢, is an image of an element in U
under the automorphism f, , Bob knows with the automorphism f, and the
ciphertext unit ¢; written as word in U] the plaintext letter a; € A which corres-
ponds to the ciphertext unit c;.

This cryptographic protocol is summarized in Table 9 (page 83).

Table 8. Plaintext alphabet A={a,a,-a,} corresponding to ciphertext alphabet U,

depending on the automorphisms f, .

Uf”1 U,uz Uful
a, f, (u) f,, (u) f, (u)
a, f, (u,) f., (u,) f,, (u,)
a, f, (uy) f,, (uy) f, (uy)

82

K
054
o<

0% Scientific Research Publishing



B. Fine et al.

Remark 22. As soon as Alice and Bob agree on the starting seed automorphism and
the Nielsen reduced set U, Bob is able to calculate the first columns of Table 8 (page 82)
for decryption (he does not know how many columns he will need because he does not
know yet how long the plaintext from Alice will be). If he gets the ciphertext C from

Alice, he only has to do a search in the table to get the corresponding plaintext units to

Table 9. Summary of the private key cryptosystem.

Public Knowledge

F:(X‘ >, X:{Xl,xz,m,xq}, g > 2 ; plaintext alphabet A:{al,az,m,aN}, N>2;
abstract free group H =(U), U ={u,u,,---,u,} with u, abstractletters;

set H,, < Aut(H); linear congruence generator A of maximal periodic length.
Alice Bob
Private keys
Explicit set U ={u,,u,,---,u,} with u wordsin X, U c F Nielsen reduced set,

U|=N;seed f_eF,,,one-to-one correspondence A—>U, a >u,.

Encryption

Choose message

S=ss,--+s,, 721,

with s € A.

Calculate

u, =a,u, =h(u,),---,u, =h(u,,) , obtain

o e

Encryption procedure:

if s,=a then s ¢ =f (u), 1<i<z

1<t<N.

Ciphertext:

C=f,(s)f, (s)f, (s)=cc, ¢,

with ¢, written as words in X
C=cpicyt--c, 5
Decryption

Compute zautomorphism:
u, =a,u, =h(u,),---,u, =h(u,,) , obtain
f,. f f

U’ ! Tt

Two possibilities:
1. For each fu‘ , i=12,---,z compute

u, ={fu, (u), £, (u,), o f, (uN)}

and get a table like Table 8 (page 82). (Decryption:
Search in this table.)

if ¢ =f,(u) then ¢ >s=a, 1<i<z
1<t<N.

2. Use Nielsen reduced set U and an algorithm to
write the ciphertext units ¢, (given as words in X)
as words in U. Together with the used
automorphism, the ciphertext is decrypted correctly.
Reconstruct plaintext message

S=ss,--+s,, with 5 eA.

z

KD
+%%, Scientific Research Publishing

83



B. Fine et al.

the ciphertext units. If columns are missing to decrypt the ciphertext, he calculates the
missing columns. Thus, in Version 3.1.a. instead of Version 3.1.b. for decryption Bob is
able to do calculations for decryption even before he knows the ciphertext.

Remark 23. The cryptosystem is a polyalphabetic system, that means, a word
U, €U, and hence a letter @, € A, is encrypted differently at different positions in the
plaintext, because different automorphisms are used during the encryption procedure
for each ciphertext unit. Thus, for the ciphertext, a statistical frequency attack (see for
instance [1]) over the frequency of words, which correspond to letters in the plaintext
alphabet, or groups of words, is useless.

It follows an example, in which for decryption a table (see Table 8 (page 82)) is used,
which stores the ciphertext alphabet U, ~and is generated with the automorphisms
Alice uses for encryption, see Example 24.I

Additionally, in [5] an example is given, in which Bob knows the Nielsen reduced set
U, hence with a known algorithm he is able to write the ciphertext as a sequence of
words in U. With the automorphisms Alice uses for encryption he is able to decrypt the
ciphertext correctly.

Example 24. This example was executed in GAP'. All details are given in Appendix
A. Firstly, Alice and Bob agree on public parameters.

1) Let Fbe the free group on the free generating set X ={X,y,z}.

2)Let A= {a,a,,, 85} = {L, E,LO,UA,V, B} be the plaintext alphabet.

3) Let Hbe the abstract free group of rank |A| =8 with free generating set
U ={u,u,,--,Ug}.

4) A set H,, < Aut(H) is determined. In this example we give the automorphisms,
which Alice and Bob use for encryption and decryption, respectively, just at the mom-
ent when they are needed.

5) The linear congruence generator with maximal periodic length is

h Z2128 d ZZHS

u>133u+51

The private parameters for this example are the following:
1) Let K, be the explicit finitely generated free group, which is generated with the

free generating set U = {uy,u,, -, u8} with words in X; for this example it is
U =Xyz, Uy=yzyt, oup=xTxtou, =y
Ug = 27'%yX, Ugi=27'yx ™, U, =Xy, Ug=y°z2

The starting automorphism f, is f hence it is U, =a = 23442 . It is known,

23442°

that a U, i=12,--,12,for u €U and a € A, therefore.
L2u =xyz, E2u,=yzy?, 12u,=x"2x", O2u, =y,

Uzu,=z"xyx, Azu,=z"yx", Vau,=x%y, Bzuy=y72"

'Groups, Algorithms and Programming [14].
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We now look at the encryption and decryption procedure for Alice and Bob.
2) With the above agreements Alice is able to encrypt her message
S =LOVE.
Her message is of length 4. She generates the ciphertext as follows:
2.1) First, she determines, with the help of the linear congruence generator
h: sz - ZZHB with U+ 133u+51 and the starting seed @ =23442 , the four
automorphisms f, € H,,, 1<i <4, which she needs for encryption. It is

U, = & = 23442,u, = h(u,) = 3117837,
u, =h(u,)=414672372 and u, =h(u,)=55151425527.

The automorphisms are describable with the help of regular Nielsen transformations,
it is

~ 2
fi, 2(N2),; (N2),, (N1), (N2),, [(N2),, | (N2),; (N2),, (N1),
(N2), (N2),, (N2),, (N1), (N2),, (N2),, (N2),,
f, :H—>H
U, > UyU UL, Us B Ug U Uy,
U, > U,U,UU7, Uy > UgUsuZ,
Uy > UUZ, Uy > Ug U, U, Uy,
U, B U Uz, Uy = Uy,
~ 2
fu, 2(N2),4 (N2), (N1), (N2), (N2), (ND), [(N2),, | (N2),, (N2),,
(N2),, (N2),; (N2),, (N1), (N2),, (N2),; (N2);; (N2)g, (N2),;,
f, H—>H
YT TR TP TIT S TH T TRTI
U, B> Uy 'UglgUy,  Ug > UglsU,U,,
Uy > UUU,%, U, > U UgUs,
U, F> UU,UsUgly, Uy B> Ugll; Uyt
~ 2
fo, =(N1), (N1), (N1), (N2),, (N2),, (N2),, [(N2),, [ (N2)g, (N2),,
(N 2)6.3 (N]')s (N 2)2.3 (N 2)7_4 (N 2)1.8 (N 2)3.4 !
f,,:H—>H
Uy B> U U, U7 U U, Uy B> U UGUS,
U, - Uy'UU,,  Ug > UgUZu,,
Uy > Ul U2, Uy > UpU,Ug2,

-2 -1, -1
U, > Ulg, Ug > U; Uy Us.
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qu = ( Nl)l (N1)3 (Nl)A (N 2)6.2 [( N 2)3.2 :|3 (N 2)2.3 (N 2)3.4 (N 2)5.2 (N 2)7.4
(N2),; (N2),g (N2),, (N2), (N1), (N2),, (N1), (N2), (N2),, (N2),,,
f :H—>H

u
-1
Uy > UgUly,  Ug > UgU,uzt,
-1,

U, 5 Uy 'U g, Ug > Ugl,U, Ul
U, - U,Uu-uust, U, - u,u;tuu,t
3 > UUsUsUpUs ™, Uy = UyU, UsU,
-1 -1 3,,-1,,-1
U, - U luguugt, Uy > ugudustugt,

the Nielsen transformations are applied from the left to the right.
2.2) Secondly, she encrypts her message. The ciphertext is

c=f, (L)f, (0)f, (V)f,(E)

= ful (ul) fuz (u4) fU3 (U7) fU4 (UZ)
= U,U,U,U, 2 U,U,U,UgUs 2 U;U,Ug” 2 U U, U U,

The ciphertext Cis written as words in X it is
C = U,U,U,U, 2 U,U,U,UgUsg 2 U, U,Us” U U5 U, U,

2,2 -1,-1

= xyzx3y2zy 2 x% 2 yzy A xPyz tyx Ttz xyx x&"(zzy*)2 Vx tx tyz ty Pxax

3) Bob gets the ciphertext
C = xy2x®y?zy*x? L yzy X yz tyx Tz xyx 0 x° (zzy’g)2 VX Tz tyz Tty P xext

from Alice. Thus, he knows that he needs 4 automorphisms for decryption.

3.1) Bob knows the set U the linear congruence generator 4 and the starting seed
automorphism f_ . For decryption he uses tables like Table 8 (page 82).

Now, he is able to compute for each automorphism f, the set U, , 1<i<4,
and to generate Table 10 (page 86) and Table 11 (page 87). I

With these tables he is able to reconstruct the plaintext from Alice. He searches for
the plaintext element s; the ciphertext unit ¢; in the column U, , 1<i<4, and
hence gets the alphabet letter a; =§; fora je {l, 2, --~,8} . Thereforel, he decrypts the

ciphertext to the message.

Table 10. Correspondence: Plaintext alphabet to ciphertext alphabet I.

U, U,

L XyzxCy?zy 2 x? (Xz’l)Z yixtyzytx

E yzy *xex (y’lx2 )2 yzly?z tyx 7zt xyx

I Xty )2 x’lzx’lz’lx(yx’l)2 Xty
O y Pz yx Py ix Tt zxyzxty yzy ?X°yz yx 2 T xyx

U Xyt zxyzCy 7t (xy)2 2y 2ty iy
A o (y X )2 2y 'z (xy) 2y K

\Y Xy tzx2yx*y‘z? x}yz 7 yx Tzt xyx

B y3272xyzx3y y3272 X72 y2271y71

K2
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Table 11. Correspondence: Plaintext alphabet to ciphertext alphabet II.

U, u,,

L xyzyz 'y ix?zixy’z? y'xzyz

E yzytxtzxty Xtzxtyzty Pxext

I XXt (2 3)2 yrxaxizt (xy) zytxatx
o) yix? (zZy’3)2 x2yz? (xy) zyxzx
U Xty txtyxPzxt 7t (xy)2 zy ' xz X

A z’ly(x’zz)2 X2y z2tyxtyzy P xzyz

\Yj x° (zzy 3)2 Xeyx2yxtzxtyzty ™t

B yix?ztxyz? yz?yZ’ytxz ' xty

C = xyzxy?zy?x2 1 yzy X yz tyx Tz xyx 0 x° (zzy’“")2 VX tzxtyz ty P xax

S =LOVE.

Security 25. The cryptosystem is a polyalphabetic system, that means, a word
U, €U, and hence a letter @, € A, is encrypted differently at different positions in the
plaintext, because different automorphisms are used during the encryption procedure
for each ciphertext unit. Thus, for the ciphertext, a statistical frequency attack (see for
instance [1]) over the frequency of words, which correspond to letters in the plaintext
alphabet, or groups of words, is useless.

The security depends on the fact, that the set Uis private. Note, that the ciphertext
units ¢, areelementsin F,,with K, = <U | ) . An eavesdropper, Eve, knows that the
elements of the set U, which where used for the encryption, can be found in the ball
B(F,L,) of the Cayley graph from F, with

L, = max{|c;|, [1=12,,2 (24)

and ¢; ciphertext units of an intercepted ciphertext
C=clC, - 1C,. (25)
The symbol “?” marks the end of each ciphertext unit ¢, 1<i<z-1.
Let
C={c,c,,C,} (26)
be the set of ciphertext units and let C,,, be a Nielsen reduced set of C, hence the

group Fe generated by éNred , is a free subgroup of F;, and rank(Fc-N , ) <z.The

main security certification depends on the fact, that for a single subset Vof F, with X
elements Eve finds a Nielsen reduced set in the running time O(AZKZ) , with 4 the
maximum over the free length of the elements in the subset V with K primitive
elements, but she has to test all possible subsets of K elements for which she needs
exponential running time, because the number of primitive elements grows exponen-
tially with the free length, here with L,. She searches in a ball B(F,L ), with
L, = max {|Ci | |c e é} for these primitive elements.

A subset of V'is also known, it is C,, <V but she has to put all other primitive
elements to this set and proves if V', which is Nielsen reduced to V; is of order Nand
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hence a candidate for U.

Furthermore, the security depends on the way how Alice and Bob choose the
automorphisms of the set H,, . To verify, whether a candidate set V' is very likely
the set Uused by Alice and Bob, it is likely that Eve writes the ciphertext units ¢, with
letters of her candidate set V'*'. This is possible because the constructive membership
problem (see Problem 11) is solvable in abstract free groups and Nielsen reduced sets.
Thus, she could get hints for the automorphisms used for encryption and it is not only
a brute force search through the set H,, .

A more detailed cryptographical analysis can be found in [5] and there are also three
modifications given, which are summarized as follows:

1) We present a modification where the ciphertext is only one reduced word in X
instead of a sequence of words, in this case it is possible that additional information is
needed for decryption, thus these are sent with the ciphertext if required. The
ciphertext can be interpreted as words in X and as words in U, thus the additional
information could be given about the ciphertext written as a word in Uor as a word in X.

Security: The security certification is extended to the fact that Eve is in general not
able to identify the beginning and end of a ciphertext unit ¢, i=1,2,---,z. There
could also be cancellations, which she is not able to recognize. Eve is neither able to
determine the number L, because she does not know what the ciphertext units c
exactly look like, nor is she able to generate the set C,,.,. This worsens her attacks of
the unmodified cryptographic protocol above.

2) We present a modification, which uses a faithful representation from Finto the
special linear group SL(Z,Q) such that the ciphertext is a sequence of matrices in
SL (2, @) . Furthermore, a variation can be used, where the ciphertext is not a sequence
of matrices but a sequence of entries of matrices. This reduces the space for the
ciphertext and the memory space for the decryption table.

Security: The security certification is extended to the fact, that there is no algorithm
known to solve the (constructive) membership problem for (discrete) free subgroups of
SL (2, Q) which are of rank greater than or equal to 2 and not subgroups of SL(2, Z) ,
see [15]. Therefore, the attack which uses a Cayley graph and automorphisms of F,,
in the unmodified cryptographic protocol is not realizable in this modification.

3) We present a modification, which utilizes the negative solution of Hilbert's Tenth
Problem. Instead of a presentation of the ciphertext as a sequence of matrices in
SL(2,Q) the ciphertext is represented as a sequence of matrices in GL(2,R) with
R= Z[yl, Yoroes yn] , the integral polynomial ring in n>2 variables. Here we get two
subcases, the first applies the modification with Hilbert's Tenth Problem on a text given
as a sequence of words in X and the second applies it to a text given as a sequence of
words in U.

Security: The security certification is extended to Hilbert’s Tenth Problem. In
addition the security is improved by the fact, that for each encryption Alice and Bob
can take privately ephemeral matrices in GL(Z,R), R:Z[yl,yz,m, yn], with the

property that the common private point D eZ" generates the correct matrices in
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PSL(2,Z). This gives randomness to ciphertexts, which complicates attacks for Eve.
The attack which uses a Cayley graph and automorphisms of F,, in the unmodified
cryptographic protocol is not realizable in this modification.

Remark 26. In [5] are two more private key cryptosystems given, which use finitely
generated free groups, Nielsen transformations and automorphisms on finitely
generated free group. The first one uses automorphisms on F instead of a subgroup of F,
as in the above described private key cryptosystem. It also has three modifications,
which use the ideas for the modifications above. The second protocol uses automo-
rphisms on plaintext units and in addition randomly chosen ephemeral keys (matrices

of (2,Q)), which give randomness to the ciphertexts.

7. Cryptosystem with Nielsen Transformation Inspired by the
ElGamal Cryptosystem

Now we describe a public key cryptosystem for Alice and Bob which is inspired by the
ElGamal cryptosystem (see [16] or ([2], Section 1.3)), based on discrete logarithms, that is:
1) Alice and Bob agree on a finite cyclic group G and a generating element geG.
2) Alice picks a random natural number a and publishes the element ¢:=g°.
3) Bob, who wants to send a message meG to Alice, picks a random natural

number 5 and sends the two elements m-c” and g°, to Alice. Note that ¢ = g®.
a -1
4) Alice recovers m = (m-cb)~((gb) )

For the new public key cryptosystem in this section let X = {Xl, Xy oty Xy }, N >3,
be the free generating set of the finitely generated free group F = <X | ) LIt s
X* =X UX™. The message is an element me S, S° denotes the set of all freely
reduced words with letters in X **. Public are the free group F its free generating set X
and an element aeS”. The automorphism £ given as a Nielsen transformation or a
Whitehead-Automorphism (see for instance the book [17]), should be chosen
randomly, an approach is given in ([5], Section 4.4).

An ElGamal like public key cryptosystem, with public parameters determined by
Alice, is now as follows:

Public parameters: The finitely generated free group F = <X| ), a freely reduced
word a=1 in the free group Fand an automorphism f:F — F of infinite order.

Encryption and Decryption Procedure:

1) Alice chooses privately a natural number n and publishes the element
f"(a)=ceS".

2) Bob picks privately arandom te N and his message meS”. The number ¢is an
ephemeral key for this message, he changes ¢ for each message m, because of Remark 27.

He calculates the freely reduced elements
m-f'(c)=c,eS and f'(a)=ic,eS". (27)

He sends the ciphertext (c,,c,)eS xS™ to Alice.
3) Alice calculates
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cl.(f"(cz))_lzm' ft(C)'(fn(Cz))_l
“m- (1 (a))( (7' (a))” 2s)
—m- £ (a)-( 17 (a))

:m'

and gets the message m.

The ElGamal like public key cryptosystem is summarized in Table 12 (page 90).

Remark 27. It is important that different random ephemeral keys t are used to
encrypt different messages. As it is for the standard ElGamal cryptosystem (see [18]).
Suppose that Bob uses the same ephemeral key t to encrypt two messages m, and m,
and assume that m is known. The ciphertext pairs are (c,,C,) and (c;,C;), with
c,=¢;, ¢ =m-f'(c) and ¢/=m,-f'(c). Eve only has to calculate Cl'-(cl)_l-m1
to get the message m, .

Security 28. A possible attacker, Eve, can see the elements C,C,,C, €S . She does
not know the free length of m and the cancellations between m and f'(c) in ¢. It
could be possible that m is completely canceled by the first letters of f'(c). Hence,

she cannot determine m from the given c,. Eve just sees words, f'(a) and f"(a),

Table 12. Summary of the ElGamal like public key cryptosystem using automorphisms on a
finitely generated free group F.

Public Parameters

Free group F =(X| ),a freely reduced word a#1 in F
and an automorphism f :F — F of infinite order.
Alice Bob
Key Creation

Choose private key neN.
Compute

f"(a)=ceS".
(S" denotes the set of all freely reduced words with

lettersin X*.)

Publish c.
Encryption
Choose plaintext meS™.
Choose random ephemeral key teN .
Compute
m-f'(c)=c,eS and f'(a)=c, eS".
Send ciphertext (c,,c,)e S xS" to Alice.
¢ (CYC)]
Decryption
Compute

6 (1(c)) =m £ (e)("(c.)
—m (17 (@)-(F (1 ()
=m- 1 (a)-(™(a))"

=m,

1

which is the message from Bob.

90
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in the free generating set X from which it is unlikely to realize the exponents n and t,
that is, the private keys from Alice and Bob, respectively. The security is based on the
Diffie-Hellman problem and discrete logarithm problem in cyclic subgroups of
automorphisms in free groups.

Variation 29. We give some ideas to enhance the security, they can also be
combined:

1) The element acS~ could be taken as a common private secret between Alice
and Bob. They could use for example the Anshel-Anshel-Goldfeld key exchange
protocol (see for instance [2]) to agree on the element a.

2) Alice and Bob agree on a faithful representation from Finto the special linear group
ofall 2x2 matrices with entriesin Q, thatis, g:F — SL(2, Q) .Now, meS" and

Bob sends the element ¢ (m) -g ( f! (C)) =C € SL(2, Q) instead of

m-f'(c)=c,eS";cand c, remain the same. Therefore, Alice calculates
c,- (g ( fr (Cz)))il =g(m) and hence the message m=g~*(g(m))eS". This variation
in addition extends the security certification to the constructive membership problem
in the matrix group SL(Z,Q) (see [15]).

We now explain this variation in more details.

In addition to X ={X,X,,--, Xy} Alice chooses a second abstract set
Y :{yl,yz,--‘, yN} , with X Y =&, which generates a free group F':<Y| > of
rank M. The automorphism ffrom Alice is an automorphism on a free group of rank
|X| if we identify x; with y, for i=1,2,---,N, then fis also an automorphism of
F', because |X | = |Y| and hence F' isisomorphic to F, see Theorem 12.

Alice needs a faithful representation of <X UY| > into SL(2,Q) such that

g:(XuY| )>SL(2,Q)

X M, withi=1,2,--,Nand M, eSL(2,Z) (29)
y, > W, withi=1,2,---,NandW, eSL(2,Q)andW, ¢SL(2,Z) (30)

Thus, each W, has at least one entry which is an elementin Q\Z.

(a) The public element from Alice is as before c¢=f"(a)eS", with private key
neN.

(b) Bob chooses privately a message meS , a random teN and calculates
c,="f'(a)eS" as before. After this he computes f'(c)=f' ( f" (a)) =f""(a)es
and writes it as a word in Y whereby he used the assignment x, =y, for 1<i<N.
We denote f'(c) as f,/(c) when f'(c) is written as a word in Y. The element
fy (c) isareduced word in Y. Bob’s element ¢, =m- f,(c) is now a reduced word in
X WY . He applies the faithful representation g on this element. It is

g(m-f(c))=g(m)-g(f, (c))=¢ eSL(2,Q). (31)
eSL(2Z)  esL(2,Q)

Instead of (c,,c;)eS xS hesends (c,,c/)eS xSL(2,Q) to Alice.

(c) Firstly, Alice calculates f"(c,) and hence gets the same element f'(c) as
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Bob, because
f'(c,)=f"(f'(a))= " (a)=1""(a)= f*(f"(a))= f'(c). (32)

Secondly, she writes f"(c,) asaword in ¥; thus she gets f, (c). Thirdly, she uses

’

the faithful representation gto calculate ¢ ( f, (C)) and together with ¢/ she gets
-1 -1
¢/ -(g (t (c))) =g(m)-g(f (c))(g (% (c))) —g(m)eSL(2,Z). (33)

She gets a matrixin SL(2,Z) and she knows that this matrix is a word in the letters
of M;, 1<i< N, hence there is an algorithm (see for instance [8]) to write ¢ (m) as
awordin ¢ (X ) and therefore as a word in X. Thus, she is able to recon-struct m.

An eavesdropper, Eve, gets a matrix ¢, € SL(2,Q) and she is not able to write it as
a word in the set X UY (because there is no algorithm known to solve the
constructive membership problem in a (discrete) free subgroup of SL(Z,Q) of rank
greater than or equal to 2 (see [15]), which is not in SL(2,Z)). Thus, she cannot get
the situation as in the cryptosystem without the faithful representation g into
SL(2,Q). There is no hint for the message m, instead of the system above in which it
is possible that an initial segment of m is visible whereby Eve does not know how long
this initial segment is and if it is relay visible. Thus, this variation extends the security
certification to the constructive membership problem in the matrix group SL (2, Q) .

We now end this section with an example.

Example 30. This example, is a very small one and it is just given for illustration
purposes. The calculations were done with GAP, see Appendix B. Bob wants to send a
message to Alice.

The public parameters are the free group F of rank 3 with free generating set

X = {X, Y, Z} , the freely reduced word aeF , with a:= x*yz?y and the automor-
phism f:F — F, which is given, for this example, by the regular Nielsen transform-
ation: [(N2),,]  (N2),, (N1), (N2),,. thus, it is:

f:F>F

X > xy?,
ye 1z
1y
1) Alice’s private key is n=7. Thus, she gets the automorphism
fT":F>F

2,-1

X > Xy°z y(yz)z(zyzzy)2 zy

2
yisyl ((Z—ly—lz—l)z y—lz—l) 7ty iz
2

Z> {((ylzl)2 z*l)2 ylzzJ y’l(z*ly’lz*l)2 7t

Her public key is
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2
C= f7(a):(xyzz‘ly(yz)z(zyzzy)2 zy) (zzy)z((zyz)2 yz)2 zyz?yzt.
2) Bob privately picks the ephemeral key t=5 and gets the automorphism
f*:F>F
X xyzz’lyzz(zy)2
y > y—l(z—ly—lz—l)z 2-1
a2 oV
ZI—)((yZ)Z)yZ.
His message for Aliceis m= 272y?zx*y'x " . He calculates
c,=m-f°(c)
2
= 72y%x? (yz-1)2 ((Z—ly—lz—zy—l)z Z_Zy_l) (Z—ly—lz—1)2 7yt
2 2 2
U((Zlylzl)z y—lz—l) Zlylzlylzlj (Z—ly—lz—zy—l)z Z1y121]
1021\ 21\ (ot oty 2
((zyzy)zy)(zyz)zxyzy
2 2 2 ¥ 2
{Zl(((zlylzzyl) Z—Zy—l) (Z—ly—lz—l) Zlyl] (271y71271)
2 2 2 ¥
y—lz—l((z—ly—lz—zy—l) Zizyfl) (Z—ly—lz—l) yl) 271
NI NP G RIS
((zyzy)zy)(ZVZ)yzy

and

2

5 2_-1 2\? _, 2 -1
c, = f (a):(xy z'y’z(zy) ) 2°y(zyz) zyz™.

The ciphertext for Alice is the tuple (c,,C,).
3) Alice first computes

( f7 (cz))f1 =y? H(((zy)2 2)2 zyz)2 zy(zyz)zJ2 zy((Zyz)2 yz)z ZyZJZ
(zy(((zyz)2 yz)2 zyzyzj2 (ZyZZy)2 ZJZ
y{([((zzy)z zy)2 zzyzy]2 z(zyzzy)2 zy]2 z(zyzzy)2 2%y

(((Zyz)z ) Zyzyzjz (2v2%y) 2(v) yllez

and gets m by
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2,,-1,-1

m:cl.<f7(c2))71:z‘2yzzx yxh

8. Conclusions

A. Shamir’s secret sharing protocol (see [6]) has become the standard method for
solving the (n,t)-secret sharing problem. The introduced secret sharing schemes are of
mathematical interest.

In contrast to other secret sharing schemes the part for the participants at the
combinatorial secret sharing scheme, see Section 3, is very easy, they only have to add
up m elements. The (time) expensive part is the part of the dealer, who has to generate
the sets R, for the participants. In contrast to Shamir's scheme, where the part of the
dealer is the easier one and the participants have to do polynomial interpolation to
reconstruct the secret.

The secret sharing scheme of Section 4 uses combinatorial group theory, especially
Nielsen transformations and finitely generated free groups. It is mathematically a very
interesting cryptographic protocol, which serves very good as a basis to develop other
cryptographic protocol. In addition the secret sharing scheme of Section 5 is also a
mathematically very interesting cryptographic protocol. Both secret sharing schemes
are the basis for the newly developed cryptosystems.

In comparison to the standard cryptosystems which are mostly based on number
theory we explained two cryptosystems which use combinatorial group theory. The first
cryptosystem in Section 6 is a kind of a one-time pad, which choice of the random
sequence for encryption is not number-theoretic. Especially the modifications with
matrices are of interest for cryptography. If the symmetric key cryptosystem is used
together with the second modification, which uses a faithful representation into
SL(2,Q), then the system is secure and the security depends on the unknown solution
of the (constructive) membership problem in the used matrix groups. If it is used
together with the third modification, which uses matrices in GL(2,R) ,
R =Z[y1, You e, yn], n>2, then the system is secure and the security depends in
addition on the negative solution of Hilbert’s Tenth Problem. Moreover, we get also
randomness to each ciphertext by the ephemeral matrices which the encrypter used for
encryption. To generate these ephemeral matrices he only needs the common secret
point D eZ", this improves also the security. Altogether, we get interesting new
private key cryptosystems, which use non-commutative groups and are based on
combinatorial group theory and not only on number theory. They provide other
options for private key cryptosystems which are based on combinatorial group theory.
The second cryptosystem in Section 7 is similar to the ElGamal cryptosystem (see [16]),
which is easier to handle. The ElGamal cryptosystem is based on the discrete logarithm
problem over a finite field. If this problem should eventually be solved we introduced
here an alternative system, which is not based on number theory.

For further research one could search for other cryptographic protocols, which can
be based on Nielsen transformations, for example a public key cryptosystem which is

not ElGamal like or a key exchange protocol. There is no algorithm known to solve the
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(constructive) membership problem for (discrete) free subgroups of rank equal or

greater than 2 in SL(Z, @) . Thus, the following questions appear: Are there quantum

algorithms for solving the (constructive) membership problem in SL(2,Q) ? Are there

quantum algorithms for solving other problems in combinatorial group theory, which

are used in cryptography?
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Appendix

We now give the computer code in GAP? for Example 24 and Example 30. Therefore
we use the FGA® package in GAP and also Nielsen transformations.

If there are Nielsen transformations of type (N1) one after another we can do them
in one step. For example if the Nielsen transformations (Nl)5 (Nl)3 (Nl)2 (N 2)32 are
applied to aset (a,b,c,d,e) we write instead of

(a,b,c,d,e)%(a,b,c,d,e’l)

%(a, b’l,c,d,e’l)

BULTEN (a‘l,b‘l,c,d,e‘l)
(N2);, (a’l, bt ch?, dle—l)

the following
(a,b,c, d,e)%(a‘l,b‘l,c, d,e‘l)

&(a‘l,b‘l,cb‘l,d,e‘l).

A. Calculations in GAP for Example 24

Alice and Bob use the free group F =(X| }, with free generating set X ={x,y,z},
and the explicit free subgroup F, of F with free generating set U = {ul,uz,---,ug} ,
U, words in X they choose

U= xyz, Uy=yzy T, oug=xTxh o, =y

. -1 . “1y,y1 . 3 . 3,-2
Ugi=Z XyX, Ug =2 yX, U; =Xy, Ug=YyzZ".

In GAP they define

LoadPackage("FGA");;

F:=FreeGroup("x", "y", "z");;

AssignGeneratorVariables(F);;

ul:=x*y*z;

u2:=y*z*yAn-1;;

u3:=xA-1¥z*xA- 15

ud:=yA-1*xA2;;

u5:=zA-1*x*y*x;5

u6:=zA-1*y*xA-1;;

u7:=x"3%y;;

u8:=yA3*zA-2;;

FU:=Group(ul, u2, u3, u4, u5, u6, u7, u8);
and prove that Uis a Nielsen reduced set with the operation

> FreeGeneratorsOfGroup(FU)

*Groups, Algorithms and Programming [14].
*Free Group Algorithms. A GAP4 Package by Christian Sievers, TU Braunschweig.
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which gives a Nielsen reduced generator set for the group FU:
gap> Free Generators Of Group (FU);
[x*y*z, y*z*yA-1, XA-1*2*XA-1, yA-1*XA2, ZA-1* X y*x,\
ZA-1Xy*xA-1, xA3*y, yA3¥zA-2 |
Alice knows the linear congruence generator A hence she can get the 4 required
automorphisms of the set H,, toencrypt her message.
These automorphisms are describable with Nielsen transformations as follows:
* Automorphism f, :

(Ul,uz,u3,u4:u51u61u7’uB)

(M1 5 (U, Uy, Us, Uy, U, Ug, Uy, Uy )
— > UUy,U;, U3, Uy, Ug, Ug, Uy, Ug

(N2),,
——24—(u,U,,U,U,, s, Uy, Ug, Ug, Uy, Ug )

(Nl)5 1
—>|U,u;,u,u,,Us, Uy, U™, Ug, Us, Ug

N25s 5 (U, ,uU,,U., Uy, Uzt U, UsU, U
— Uy, UyUy, Ug, Uy, Us ™, Ug, UgUg, Ug

2
[(Nz)a. J 2 -1
—— <u1u7,u2u4,u3u4,u4,u5 ,ue,u7u8,u8)

(N2),6 2 -1
— 8> (Ul , Uyl U7, Uyl Us™, U, UsUg, U )

(N2)s, 2 -1
——51 5 (u,u,,U,U,, UsUg , U,Ug, Ug "UyU; , Ug, UsUg, Ug

(N1), 2 -1 -1, -1
——7—(Uu,U,,U,U,, gz, U,Ug, Us Uy Uy, Ug, Ug U5, Ug

(N2)g 2 -1 2 -1 -1
— 85 (Uyty, Uy, Ugliy, U, Us Uyl Ul Ug 7™, Ug )

(N2)g, 2 -1 2 -1 -1
——>(uu,,u,u,, usu,, u,Ug, Us U U, , UgUsuy, , Ug U5, Ugl, U,

(N2),, 2 -1 2 -1,
——=14 5 (U Uy, UyU,, Ugly , U,Ug, Us U Uy, UgUaUy, Ug Uz U, U, UgUs Uy

(N2), 2 -1 2 -1 -1
— 5 (uu,,u,U,, UUZ, U,Ug, Us U, U, , UgUau2, ugtu U, ug, Uglyu,

(N2)1.2 2 -1 2 ,,-1,-1
——212 5 (UU,U,U,, UyU,, UsUZ, U, Ug, Us 'UyU,, UgUgUZ , U Uy MU, Uy, UgUy U,
(N2),, 2 2 -1 2 11
——22 5 (U,U,U,U,, U,U,UsUz , UgUs, U U, Us Uy Uy, UgUUz , U 'U, U, Ug, Ugl, Uy

(N2), (07U, UpU, U7 U, U, Ugls 0,y Us U, UgUsUiZ, Ug U U Ug, Ut )
— > U U7UxU,, Uy U, UsU ., Uy, UyUgUs U Uz, Us Uy Uy, UgUsUy s Ug U, U5 Ug, Ugl Uy

Hence, the automorphism is
f, :H—>H
1
U, > uyu,u,U,,
2
U, > U,U,UU;,
2
Uy > UsUy,
-1
U, > U,UgUs UyU,,
Uy > Ug'u,u
5 = 5 H1M7
2
Ug > UgUsU,,

-1,.-1
U; = Ug U, U, Ug,
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Ug > UgUi,U,.

e Automorphism fUz:

—~

Uy, Uy, Ug, Uy, U, Ug, Uy, Ug )
(N2)

j;

(ulu3,uz,u3,u4,u5,u6,u7,u8)
(N2)

g

(UyUs, Uy, Ul , Uy, Ug, Ug, Uy, Ug )

(N1),(N1)

|

(N2)

@

(N2)

J»

[(N2), ]

J

-1,,-1

HM

—
=z
Nt
S
—

-1,,-1

HH

(N2)

|

Hence, the automorphism is

f

uz
u, > u;u o,
-1
U, F> U, UgUgUs,
U, > UsU:U;2
3 = 3¥5Y4
U, > UyU,U,UgU,
Us > U:UsMueu
5 = 5%2 Y6-51
Ug > UgUsUoU,,
U, > U,UgUs,

Ug > Ugli, U,

* Automorphism f,

(s, U,", Uglis, U, Us, Ug, Uy, Ug )
-1 -1

UyUs, Uy®, Ugl, UL, U, Ugls, Us , U

1.1 -1

Ut Uyt Uy, U, Y, U, UgU, Uy, U

-1,,-1 -1 -2 -1
(Ut Uy, U, UG, U, Uglis, Uy, Uy )
U5 U U™, Ugligl?, U, Ul Ugls Uy Uy )

Uy Uyt Uyt UUsU, %, Uyt Uyt Ul U UgU , Ug

)

=(

—(

(u3 ull,uz’l,u3u5u;2,ufuz’l,usuz’l,u6u5,u7u6u5,u8)
(u3 ull,uz‘lug,u3u5u;2,u;1u2‘1,usugl,u6u5,u7u6u5,u8)

4 (Uuy ™, Uy Uy, Ugligliy, Uy "0, s, ™, Uglis, Uy UgUs, Ul 'u, ")
u;lul’l,u;lug,u3u5uf,u2u4,u5u2’1,u6u5,u7u6u5,usufuz’l)

U, U, Mu,U, , Uy MU, UsUgU, 2, UyUy , Uty UgUs , U UgUs , U, MUy

2 (U5 U U, Uy Uy 'UgUgUs , UglisU,, Uy, Ul UgUs, U Ugls, Ugtl, U )
-1 -1 -2 -1 -1,,-1
(u3 Uy U,y U "Ugligls, UsUgl;”, Uy, U, Ul , UgU, Uy U, Ugll; U, ")

U Uy U, U, , U MUgUgUs , UgUsU,®, UoU,, UsUs UgUs , UgUs U, U, , U UgUs , Uglly 'Uy )

-1,-1 -1 -2 -1 -1,,-1
(u3 U, "U,U,, Uy UglgUs, UgUgU, , U,U, U, Ugl, UgU, UgUs , UgUsU,U,,, U, UgUs , Ugl, U )
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(U, U, ,Ug, Uy, Ug, Ug, Uy, Ug )
N1),(N1)-(N1 _ - -
( )2( )5( )3 (Ul,uzl,US,U4,U51,U6,U7,U81)

(N2)g, -1 -1 1
——s3 5 (uy, Uyt Uy, Uy, Us Uy, Uy, Uy
(N2);, -1 -1 ]
——>(u1,u2 ,UgU Uy, Ug ™ Uy, U, U )
(N2),, }(

1,41 -1 -1
UyU, ™, Uy, Ul , Uy, Us ™, UgUs, Uy, Ug )

2
N2 _ _ _ _ _
M)(uluzl,uzl,u3u7,u4u82,u51,u6u3,u7,usl)
(N2)s 6 -1 -1 2 -1 1
— s (u,uyt, Uyt UgUy, U, U5, UstUgUy, UgUs, Uy, U

N2 — _ _ _ _
%(uluzl, u,, uu,, u,ug’, u51u6u3,u6u3,u7,u81u3u7)

(N2)g, 11 2 1 2 -1
—>(ulu2 Uyt UgU, , U,Ug”, Us M UgUy, UgUZu, Uy, Ug u3u7)

(N1)g -1 -1 2 -1 2 1,1
— s (UyU," Uy, Uyl U,Ug?  Us Ugls, UgUZ Uy , Uy, U5 U5 Uy )

N2 _ _ _ _ -1 -
%(uluzl,u21u3u7,u3u7,u4u82,u51u6u3,u6u32u7,u7,u71u31u8)

N2 _ _ _ _ _ 1 =
%(uluzl,u21u3u7,u3u7,u4u82,u51u6u3,u6u§u7,u7u4u82,u71u31u8)

(N2), -1, -1 -1 -1 2 -1 2 2 -1 -1
—“3>(u1u2 U; Uz Ug, U, UgU,, UgU,, U, Ug ™, Ug “UgUy, UgUS Uy, U U, Ug“, U; Uy us)

N2 1 -1 — _ _ _ _ _ 1
%(uluzluﬁu;ug,u21u3u7,u3u7u4u82,u4u82,u51u6u3,u6u§u7,u7u4u82,u71u31u8)
Hence, the automorphism is
f,,:H—->H
3
-1,,-1, -1
U, > uyu; U g g,
-1
U, > Uy'u,u,,
-2
U > UgU,U,U52,
-2
u, B> u,ug’,
Ug > Ug'ugu
5 = 5 Y63
2
Ug B> UgUiu,,
-2
U, - UU,ug’%,
-1 -1,
Ug > Uy U5 Uy,

(u;,U,,Ug, Uy, Ug, Ug, Uy, Ug )

N1),(N1),(N1 _ _ _

( )1( )3( )4 (ull,uz,u311u4llu5,u5’u7’u8)

N2 _ _ _
%(ull,uz,ual,u‘ll,us,ueuz,u7,u8)

* Automorphism f, :

3
[(Nz)a.z] -1 -1 ,,-1 3
—2el s (U Uy, U U U Uglly Uy U3 )

N2 _ — — _
%(uf,uzuﬁugl,u41,u5,u6u2,u7,u3u§)
(N2)3_4 -1,,-1

-1 -1 -1 3
— e (U, U Uy U U, Uy, Uy U3 )

K2
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U uupt Ut Ut uguoUst, Ugl,, Uy, Ugll )

u,tuustug eyt ugt ugu,ust ugy,, usugt ugul )

-1,-1
U U gt uust ustugt ugtugu,ut ugu,ug ,uuz,uu4,uu)

HJH

(u1 u lu;l,uzu;l,u;lu;l,u;l,u5u2u3‘1,u6u2,u7u;1,u8u§)

U tug gt upust ug gt ug tugu,ust ugu,ust UGy, Uyt ugusug tu; )
N1), (N1 _ 1 - _ _ _ _ 1. -
(N2 (N3)y (u4u3u1,u3u21,u31u41,u41u5u2u31,u5u2u31,u6u2,u7u41,u8u§u31u41)
(u4u Uy, UgUs b, ugtug U tugU, Ut U, Ut UG, U U MU, uglisus tu) )
(N1)y -1 -1 -1 -1 1A 3,-1 -1
(u Ugy, Uyl U, U MUy Us ™ Uslp s, Ul ,Us U UL UgUSU MU )
(u UUy , UgUs U, Uy, U, Ug, U MU UL UG U, Ut U Uy, Us U, U5t ugusus uy, )
(u Uy , UgUly U, Ug, U, UgUs U, Uz ™, U MU UL UG U, U™ Ug Uy , U U, UL UL T, UgUsus Uy, )
(N2)g, 3, -1,,-1
——8L 5 (U, U,U, , UUy MU, Uy, U, UgUg U U U, MU U U ™, U, Us U U, U, ugUy , U Uy ugust ugudug tu,
Hence, the automorphism is
f, :H—->H
4
U, > ULy,
-1
u, = usu,"u,u,,
-1
Us; = U,U,uzu,u,",
-1 -1
U, = U, UsU,Us ™,
-1
Us > UgU,Us™,
Ug > UgU,U,UsU,,
-1 -1
u; = u,u, usu,”,
3,,-1,,-1
Ug > UgUsUg U™
In GAP she defines for the automorphisms:
#Automorphism f {u_1}
ull:=ul*u7*u2*u4;;
ul2:=u2*ud*ud*udn2;
ul3:=u3*u4A2;;
ul4:=ud*u6*us/r-1*ul*u7;
ul5:=u5A-1*ul*u7;;
ul6:=u6*u3*u4/;
ul7:=u6/-1*ud/-1*u7*us;;
ul8:=u8*ul*u7;
#Automorphism f_{u_2}
u2l:=u3A-1*ulr-1*u2*ud;;
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u22:=u2/-1*u8*u6*us;;
u23:=u3*u5*u4n-2;;
u24:=u2*ud*u7*u6*us;;
u25:=u5*u2/-1*u6*us;;
u26:=u6*u5*u2*u4;;
u27:=u7*u6*u5;;
u28:=u8*udN-1*u2A-1;;
#Automorphism f_{u_3}
u3l:=ul*u2A-1*u7A-1*u3A-1*us;;
u32:=u2A-1*u3*u7;
u33:=u3*u7*ud*u8n-2;;
u34:=u4*u8n-2;;
u35:=u5/-1*u6*u3;;
u36:=u6*u2/3*u7;;
u37:=u7*ud*u8n-2;;
u38:=u7/-1*u3N-1*us;;
#Automorphism f {u_4}
u4l:=ud*u3*ul;;
u42:=u3*u2/-1*ud*u3;;
u43:=ud*u3d*u5*u2*u3dnr-1;
u44:=u4N-1*u5*u2*u3r-1;;
u45:=u5*u2*u3n-1;
u46:=u6*u2*ud*u3*ul;;
ud7:=u7*udN-1*u3d3*u2/-1;

u48:=u8*u2A3*u3dA-1*udn-1;;

Hence, to get the ciphertext
c=1, (L)f, (0)f, (V)1 (E)

= £, (u) f,, (u,) f, (ur) f,, (uy)

as a word in X; she calculates in GAP:
gap >ull;
XAV XAy A2X XYy N-2* A2
gap> u24;
VXY A-DXXAS YR ZA-THY XA - T ZA -1y X
gap> u37;
XAS*(ZA2XyA-3)A2
gap> u42;
XA-DXZXXA-THY* ZA- Ty A- 2% 724 x A -1
Thus, the ciphertext is
1,1

C = xy2y?zy?x? 1 yzy X yz tyx Tz xyx 0 x° (zzy’3 )2 VX tzxtyz Tty P xax 7t

and this is sent to Bob.
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For decryption Bob calculates the tables Table 10 (page 86) and Table 11 (page 87).
For this he chooses the automorphisms in H,, , which Alice also used. In GAP it is:
gap> ull; ul2; ul3; ul4; ul5; ul6; ul7; uls;
XXYYZ¥RABHYy A2 2y N-2Xx A2
YXZXYA-2X XA XA -1 (YA -1 A2) A2
XA-T¥Z*XA-1*(yA-1*xA2) A2
YA-DXXAXZA-THP* XA - 25y A- TN - DX 25Xy * 2 x A 3%y
XA-TYYA-TXIA-1¥ 25y ¥ 2¥x A 3%y
ZA-TXPARA-2¥Z*XA-T¥ (YA -1¥XA2) A2
XXYA-TXZXXN-2X Y XA BXY AL 2N -2 yAS*ZA-2¥ X y* 2 x A 3ty
gap> u2l; u22; u23; u24; u25; u26; u27; u2s;
(XFZA-1)A2*Y A-T*XA -1y 2ty A-2*x A2
YXZA-TXyA2*ZA-3Fy*xA-1*ZA-1¥ % y*x
XA-T¥Z*XA- 1T 2A- DX (YA - 1) A2*xA- 1Yy
VXY A-DAXAS Y ZA - Ty A -T2 A -1y X
ZA-TH(XY) AXZA-TXYA- TR ZA-TH* A - TR ZA- T Xy X
ZA-TXYRA-THZA -1 (X*Y) A 22Xy A-2% X A2
XAV ZA-TXYP*RA-T A - Ty *x
YABXZA-2¥XN-2Xy A ¥z A-1*yA-1
gap> u31; u32; u33; u34; u3s; ud6; u3d7; u3s;
XYY ZA-THYA-2XXA-2XZA- Ty A3*ZA -2
YrZA-TXyA-TA-1¥ 23/ 2%y
XA-1¥Z*XN4* (2N 2XyN-3) A2
YA-T*XA2*(zA2*yA-3)A2
XA-TXYA-TA-THy*xA-2% 2% A -1
ZN-THYXA-TXY ZA3Xy A -1*xA 3%y
XASX(ZA2%yA-3)A2
YA-1TXXA-2%ZA-1* Xy A3%¥ZA-2
gap> u4l; u42; u43; ud4; u4s; ud6; ud7; u4s;
yA-1¥x*z¥y*z
XA-DXZXXA-TY A - Ty A-2%x% 26 x A -1
YA-DX* XA -1 ZA-1TH (XY A2* 24y A- T2 A - 14X
XA2XYZA-TX (XFY) A2X Xy A-1TAR*ZA- 14K
ZA-TH (X Y) A XXy A- 1%z A - 14K
ZA-THYA- TR ZAyA- 24Xt 24yt
XA YIXA- 22Xy XA -TX XA -1y ¥z A - THy A -1

YABXZA-2Xy*z A Yy AT ZA- 14 A -1y
With this information Bob is able to reconstruct the message S =LOVE .

B. Calculations in GAP for Example 30

Alice defines the public parameters.
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Let X ={X,y,z} be the free generating set for a free subgroup of rank 3:
LoadPackage("FGA");;
F:=FreeGroup("x", "y", "z");;
AssignGeneratorVariables(F);;

Additionally she defines the freely reduced word a:=x*yz'y and describes the

automorphisms fwith the following regular Nielsen transformation

(X, y,Z)M)(XyZ,y,z)

&)(Xyz’ y’ Zy)

(N), (XyZ’ v, y—lz—l)
(N2),4 (Xyz’ 271’ y—lz—l);

hence the automorphism is

f:F>F
X > xy?,
Y277
1y izt
and she defines in GAP:
x1:=x*yA2;;
yli=zA(-1);

2Li=yA(-1)*2A (-5

Alice chooses as private key n =7, hence she must calculate the automorphism f'.
For this she calculates in GAP:

#Calculate automorphism fA2=fA1(fA1)

x2:=x1*y1A2;;

y2:=z1A(-1);;

22:=y1A(-1)*217(-1)3;

gap> x2; y2; 225

X¥yA2%¥zA-2

'y

ZA2*y

#Calculate automorphism fA3=fA1(fA2)

X3:=x2*y2A2;;

y3:=22A(-1);;

23:=y2/A(-1)*227(-1);5

gap> x3;y3; 23;

X*y/\z*z/\_l*y*z*y

yA-1¥zA-2

%%
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(yA-1%zA-1)A2%zA-1

#Calculate automorphism fA5=fA2(fA3)
X5:=x3¥y3A2*23/(-2);;

y5:=23*y3;;

25:=23/2%y3;;

gap> x5; y5; 255

XXYAXZA-1XyA2* 24 (2¥y) A2
YA-T*(zA-THyA-1#zA-1)A2%zA -1
((yA-1*zZA-1)A2*ZA-1)A2XyA-1*ZA-2

#Calculate automorphism fA7=fA2(fA5)

X7:=x5%y57 (2)*25/(-2);;

y7:=25*y5;;

27:=25"\2*y5;;

gap> x7;y7; 27;

XAYAZ ZA- Ty (Y4 2) A2X (24 y¥ZA2%y) A2* 2ty

YA-T*((2A- Ty A-1¥ZA-1) A2XY A-1XZA- 1) A2XZA-T¥yA-1¥ZA -2
(((yA-1*ZA-1)A2XZA-1)A2XyA-1XZA-2)A2XyA-1*(ZA-1*yA-1¥ZA-1)A2%ZA-1

Thus, the automorphism f7 s
f":Fi>F
2
X > xyzz’ly(yz)z (zyzzy) 2y,

2
Yyl ((Z—ly—lz—l)z y—lz—l) 7ty 172,

2
Z> {((ylzl)2 z*l)2 ylzzJ y’l(z*ly’lz*l)2 7

Her public keyis ¢:=f'(a):

C=XTA2YYT* LN (-2)*YT3;

gap> G
(KXYADXZA-THY* (YH2) A2X (2Xy ¥ zA2%y) A2* 2y ) A2* (2A2%y) A2*\
((z*y*z) A 2*y*z) A 2* 2 y*z A 2*y*zA-1

Bob is now able to send a message to Alice. Let m=2z"y?zx’y'x " be the message

m:=zA-2XyA2*Z*x A 2*y A-1*xN-15;
#Calculate automorphism fA2=fA1(fA1)
x2:=x1*y1A2;;

y2:=z1A(-1);;

22:=y1A(-1)*z1A(-1);3

gap> X2; y2; 22; X¥yA2*zA-2 2y zA 2%y
#Calculate automorphism fA3=fA1(fA2)

for Alice. He chooses the ephemeral key t=5 and hence calculates the automorphism
f° in GAP as follows:
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x3:=x2%y2A2;;

y3:=22A(-1);;

23:=y2A(-1)*22/(-1)3;

gap> x3; y3; 23;

X*YAZ*ZA-I*Y*Z*Y

yA-1%zA-2

(yA-1%zA-1)A2%zA-1

#Calculate automorphism fA5=fA2(fA3)
X5:=x3*y3A2*z23/(-2);;

y5:=23*y3;;

25:=23/2*y3;;

gap> x5; y5; 255
XXYAXZA-1XYA2* 24 (2¥y) A2
YA-T*(zA-THyA-1#zA-1)A2%zA-1
((YA-1*ZA-1)A2*ZA-1)A2*yA-1%ZA-2

Hence, the automorphism f° is
f*:F>F
X > xyzz’lyzz(zy)z,
yis yt (271)/71271)2 7t
2 2
Z ((y‘lz‘l) z‘l) y'z2

He now calculates his ciphertext (c;,c,) for Alice with ¢, =m-f°(c) and
c,=f°(a) in GAP:

#c22:=fA5(c)

€22:=(x5*y5A2% 25N (- 1)*y5* (y5%25) A 2* (25%y 5425/ 2*y5) A 2X 25%y5) A 2%\
(251 2%y5)A2*((25%y5*25) A 2*y5*25) A2*25%y5* 25 A 2*y5*25A (-1);3

cl:=m*c22;;

gap> cl;

ZA2XYARXZ*RADX (Y ZA-1)A2* ((ZN-1Hy A -1*ZA-2%y A -1) A2\

g A2y A1) A2X (ZA-THyA-1¥ZA-1) A2*ZA- Ty A-T¥((((2A-\

IXYA-1*ZA-1)A2XYA-1*ZA-1)A2XZA-T*y A-1¥ZA-1¥yA-1%ZA\

SI)AZX(ZA-THyA-T¥ZA-2¥y A1) A2*ZA- THy ATz A- 1) A2%((\

ZA-TXYA-THRZA XY A1) AXZA-2XY A1) A2* (ZA-1XyA-1%ZA-\

D)A*ZA-T* YA ZA- Ty (2 A -1 (((ZN-THy A -1 ZA- 2%y A=\

1)A2*ZA-2XY A1) A2¥ (ZA-1¥yA-1¥ZA-1) A2*ZA- [¥y A1) A3\

(ZA-THyA-T*ZA-1) AD¥YA-THZA- T4 ((2A- T4y A-1%ZA- 24y A1\

YA ZA- 24y A1) A2 (ZA-T¥yA-T*ZA- 1) A2XYA- 1) AB¥ZA-1%(\

(ZA-THyA-T*ZA- ¥y A1) AD*ZA DXy A- 1) A2* (ZA-THyA-1¥ZA-1) A2\

yA-1¥zA-1*y

#c2:=fA5(a)

K2
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€2:=x5/2%y5*z5/ (-2)*y5;;
gap> c2;
(XXYAZXZA-THYA2*Z* (2Yy) A2) A2X A X y* (2Xy*z) A 2¥ 2¥y*z A -1

Bob sends (C;,C,) to Alice. Alice gets the message m by calculating
m:cl-(f7(cz))

-1

In GAP she computes:

#dc:=fA7(c2)

de:=(X7*y7 A2 2T A(- 1)y 7A2* 27 (27*y7) A2) A2* 27 A 2*y 7%\
(z7*y7*27)N2*27*y7* 27N (-1)55

gap> dc;

(KXY (Y*ZA-1)A2*((ZN-TXYA-1*ZA-2XY A1) A2*Z A 2%y A- 1\

YAX(ZA-1XyA-T*ZA-1)A2*ZA- Xy A-TX((((2A-T¥y A-1*zA-\

1)A2XYA-T*ZA-1)A2XZA-T*yA-1XZA-1¥yA-1¥ZA-1)A2% (N -\

Dy A-T*ZA- 26y A1) A2¥ZA- T4y A T*ZA- 1) A2 ((2A- T4y A-1#)

ZA-2XYA-1)AXZA-2XY A1) AD* (ZA-1XyA-1%ZA-1)A2%ZA- 1)\

AR YA-TH(((2A-TXYA-TXZA- 1) A2XYA-1XZA-1) A2XZA- ¥y A-\

IXZA-TXYA-TXZA-1) A2 (ZA-TXYA-1*ZA- 22y A1) A2*ZA-1Hy\

A-TXZA-TH((((2A-1¥y A-T¥ZA- 24y A1) A2XZA 24y A1) A2X(\

ZA-TXYA-1*ZA-1)A2XZA-TXyA-1)A2X((ZN-1*y A-1*ZA-1) A2\

XYA-TXZA-1)ARXZA-TXYA-T¥ZA 24y A1) A2X(((2A-1XyA-1%\

ZA-1)A2XYA-TXZA-1)A2XZA-T*yA-T¥ZA-T*yA-1¥ZA-1) A 2% (\

ZA-TXYA-T¥ZA-2XY A1) A2*ZA-TXyA-1¥ZA- 1%y

gap> dch-1;

yA-TX(((((z*y) A2*z) A2X 2 y* z) A2* 2y * (2¥y*2) A2) A 2% 2\

Y*((Z*Y*Z) AZ*Y*Z) AZ*Z*Y*Z)AZ*(Z*Y*(((Z*Y*Z) /\Z*Y*Z)\

AXZXYXZAY*Z) A2X (2 y* 2 A 2Xy ) A2* ) A2y (27 2%y) A2\

x-Zx-y) A2>(-Z/\2>(-y>(-z>(-y) /\2)(-Z>(-(Z>(-Y>(-Z/\2>(-Y) /\2)(-Z>(-Y) AZ*Z*(Z*Y\

*ZAXY)AXZAXYH (((2XY¥z) A2Xy*z) A2X 2 y* 2ty * z) A 2% (2\

*YFZAXY)A2XZX (2 A-1)A2Xy A-1¥XA-1)A2

gap> cl*dcA-1;

ZA-2XyN*ZXX A2y A-1*xA-1

Finally, she reconstructs the correct message

22y 2y L

KD
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