Open Access Library Journal

Complex Number Theory without Imaginary
Number (i)

Deepak Bhalchandra Gode

Directorate of Census Operations, Mumbai, India
Email: deepakm n4@rediffmail.com

Received 26 July 2014; revised 20 September 2014; accepted 23 October 2014

Copyright © 2014 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper new method is introduced for complex numbers; this method does not include im-
aginary number “i” but produces the same results that occur in Addition, Subtraction, Multiplica-
tion & Division of complex numbers, also proof of Eluer Formula e’ and De Moivre theorem with-
out using imaginary number “i”. Furthermore placing the light on the square root of a negative
number, the square root of a negative number is equal to the square root of the same positive real
number but with an angle of 90 degree to real line. The intention is that there’s nothing mystical
about imaginary number “i”. The square root of minus one is just as real as any other number.
Complex numbers exists without imaginary number “i”. This paper is limited to the results which
are already established.
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1. Introduction

An algebra of real number is not enough to solve the equations like X?+1=0. To avoid this, concept of com-
plex number was introduced; it is a combination of real numbers and imaginary number i, where i is equal to
square root of minus one J-1. Since then it was used to solve the equation which has no solution in real num-
ber theory and also established its use in different disciplines like electronics, quantum theory etc. But since
J-1 has no exact value & meaning, it is a fact that an injudicious use of this symbol often leads to mutually
contradictory and absurd conclusions ([1], p. 1).

It is also observed that in graphical representation of complex number the point i shown on Y axis has exactly
the same altitude or length as number 1 or —1 of X axis has from origin. This implies that value of i=1 isa
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contradiction, since we don’t know the exact value of square root of —1 (i.e. i= \/—_1). So it is better to have a
number system which does not involve “i” but gives all the benefits of complex number system.

Herewith complex number without imaginary number is being introduced; it is a combination of real numbers
& trigonometric functions i.e. cos(8), sin(6). Any number in complex number theory without “i” is represented
by acos(@)+bsin(@) where a & b are real numbers and & =tan™(a/b). It has direction and altitude/mod-
ulus same as complex number but without “i”. In graphical representation, acos(é’) represents X axis and
bsin(6@) represents Y axis.

This is a simple graph, X axis represents combination of real number “a” and cos(d), whereas, Y axis
represents combination of real number “b” and sin(6) where 6= tan’l(a/b) . Points shown in Figure 1 are ex-
plained below

Poi Here real number Here real number Angle “0” equal to Corresponding complex number without
oint on graph g e 1 E—— o
a” equal to b” equal to tan—(a/b). imaginary number “i” is

©, 3) 0 3 90 deg 3sin(90)

1,1) 1 1 45 deg €0s(45) + sin(45)

(3,2 3 2 33.69007 deg 3c0s(33.69007) + 2sin(33.69007)

(5,0) 5 0 0 deg 5cos(0)

(-1,-2) -1 -2 243.4349 deg —1c0s(243.4349) — 2sin(243.4349)

Note: 1) Here onwards short form “CNWOI” is used in place of complex humber without imaginary number i; 2) The value of angle @ is taken in de-
grees; 3) The cos(6) & sin(6) can have angle from 0 to 360 degrees; 4) The tan(6) can have angle from —180 to 180 degrees.

Every CNWOI is interlinked with its members i.e. the real numbers a & b, the angle € and the length R from
origin (i.e. radius or modulus).
Let a+ib beany complex number then its equal CNWOI is
acos(0)+bsin(0) where 6 =tan™(a/b)

Radius or Modulus R: R is calculated by putting values of cos & sin for 6= tan’l(a/b) =6, (some angle)
in CNWOl i.e.

R =acos(6,)+bsin(6,)
Example: For a point (0, 3) in above Figure 1, 8 = 90 deg so
R =acos(6,)+bsin(,)=0xcos(90)+3xsin(90)
R=0+3x1=3

This R is same as modulus of complex number i.e. R=+a’+b’.
Calculated R for points shown in Figure 1 is given in table

Here real number “a” Here real number “b”

Point on graph equal to equal to And angle “6” equal to R is equal to
(0,3) 0 3 90 deg 3
1,1 1 1 45 deg 1.414214
(3,2 3 2 33.69007 deg 3.605551
(5,0) 5 0 0 deg 5

(-1,-2) -1 -2 243.4349 deg 2.236068

Coefficients a & b: If “R” and “6,” are given then coefficients a & b are equal to
a=Rcos(¢,)&b=Rsin(6,) ([1], pp. 11 & 12and [2], p. 11).
Example: Suppose “R” and “8,” are 2.236068 and 243.4349 deg respectively then

a=2.2360680s (243.4349) = 2.236068 x (~0.44721) = 1
b = 2.236068sin (243.4349) = 2.236068 x (~0.89443) = 2
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Figure 1. Graph of complex number without imaginary number “i”.
This is how “R”, “6”, “a” & “b” are interlinked to each other.

2. Addition of CNWOI
There are two CNWOI
acosd, +bsing, where 6, =tan™ (a/b) and ccosé, +dsind, where 6, = tan™ (c/d)

Then the addition is
(a+c)cosd, +(b+d)sing, where 6, =tan™*((a+c)/(b+d))

3. Subtraction of CNWOI
There are two CNWOI
acosd, +bsing, where 6, =tan"*(a/b) and ccosé, +dsiné, where 8, = tan™* (c/d )
Then the subtraction is
(a-c)cosd, +(b—d)sing, where 6, =tan™*((a-c)/(b-d))

4. Multiplication of Two CNWOI
There are two CNWOI
acosd, +bsing, where 6, =tan™ (a/b) and ccosé, +dsind, where 6, = tan™ (c/d)

Putting angle of @, in first number will gate a number which is equal to ~/a® +b? let’s say this number is
Ry, similarly putting angle of @, in second number will gate a number which is equal to /c* +d* let’s say
this number R, then multiplication of this number is equal to

[RR, cos(6, +6,) |cosd, +[ RR,sin(6; +6,) |sind,
where 6, = tan™* ([RR, cos(6, +6,) |/[ RR, sin (6, +6,)])
Related multiplication rule for two complex numbers by De Moivre is 2,z, =I,I, (COS(H1 +6,)+isin(4, +02))
([1], p. 14 & [2], p. 13).
Example

Square of a number 1cosé, +2sin6, where 6, =tan™*(1/2) here angle 6; =63.43495 and R; = 2.236068 for
first number and since it is a product of same number (i.e. square of a number) angle and R are same, so product
is equal to

[ 2.236068 x 2.236068x c0s (126.8699) |cos 6, +[ 2.236068x 2.236068 xsin (126.8699) |sin 6,
[ 2.236068x 2.236068x (—0.6) | cos 6, +[2.236068 x 2.236068 x 0.8]sin &,

OALibJ | DOI:10.4236/0alib.1100856 3 October 2014 | Volume 1 | 856


http://dx.doi.org/10.4236/oalib.1100856

D. B. Gode

This is equal to
-3c0s 6, +4sin 6, where 6, = tan ™ (-3/4)

This is identical to square of complex number (1+ 2i).

5. Division of CNWOI
There are two CNWOI
acosd, +bsing, where 6, =tan™*(a/b) and ccosd, +dsiné, where 6, =tan™(c/d)

Then for division of acosé, +bsing, /ccosé, +dsing,.
First find R and angle 4 for both numbers as did in multiplication calculation, then the division is equal to

[(R,/R,)cos(6, —6,)|cosd, +[(R,/R,)sin(6; - 6,)]sin 6,

where 6, =tan™((R /R, )cos(6, -6,)/(R,/R,)sin(6, - 6,))
Related division rule for two complex number by De Moivre is 2, /2, =1, /1, (cos(6,—6,)+isin(6,-6,)) ([1],
14 & [2], p. 14). '

Example
Division of two CNWOI

1cosd, +2sin 6, where 6, =tan™(1/2)
So angle 0; = 63.43495 and R; = 2.236068 for first number
2c0s 6, +3sin 6, where 6, =tan*(2/3)

So angle 6,=56.30993 and R, = 3.60551 for second number.

Now 1cos@, +2sin 6, divided by 2cosé, +3sin g, is equal to
(R,/R,)cos(6, —8,)cos; +(R, /R, )sin (6, -6, )sin b,
[ 2.236068/3.60551 cos (63.43495 —56.30993) | cos 6; +| 2.236068/3.60551x sin (63.43495 —56.30993) |sin &),
[0.620174x cos(7.125016) |cos 6, + | 0.620174xsin (7.125016) |sin 6,
[0.620174x 0.992278]cos 6, +[0.620174 x 0.124035]sin 6,
0.615385c0s 6, +0.076923sin 6,

This is equal to

0.615385c0s 6, +0.076923sin 6, where 6, = tan™* (0.615385/0.076923)

This is identical to the division of above complex numbers using imaginary number i, i.e. equal to
8/13+1/13i.
6. Proof of Eluer Formula €' =cos(8)+isin(8) [1]-[4]

Let a-+bi isany complex number
Its equivalent complex number without imaginary number i (CNWOI) is

acos(6)+bsin(6) where 6 =tan™ (a/b)

Now [e]acos(a)min(a) :[e]acos(gl) [e]bSin(HZ) since we have parted it into two complex numbers, there are two

cases each for these two parted CNWOI
For first CNWOI 6, may be 0 deg or 180 deg depend on the +ve or —ve value of “a” and its R is equal to ab-
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solute value of “a”. Similarly for second CNWOI 8, may be 90 deg or 270 deg depend on the +ve or —ve value
of “b” and its R is equal to absolute value of “b”, solving these cases one by one we get
For first CNWOI if 4, is equal to 0 deg i.e. “a” is any positive number on X axis, then

[e]™ = {1+ acos(0)/11+ (acos(O))2/2!+(acos(O))3/3!+(acos(0))4/4!+---}

Using product rule of CNWOI for terms with power greater than one and taking R is equal to absolute value
of “a” we get

[ ={1+acos /1l+{[a cos(2x0) ]cos(8;)+[ a*sin(2x0) ]sin /2'
)]

(
+{[a3 cos(SxO)]cos(H) [a sin 3><0 sin( }
+{[a4cos(4x0)]cos(9 +[a"sin(4x0) Jsin( }/4' }

= {1+acos(0)/11+a’ cos(6,)/2!+a’ cos(6, ) /3!+a" cos (6, ) /41+--}
And using addition rule of CNWOI
[1+a/11+a’/21+2°[31+ " /414 |cos(a) = e cos(a)
So if “a” is any positive number on X axis

[e]m(a‘) =e cos(a)

It is same as complex number with imaginary number i.
Now if 6; is equal to 180 deg i.e. “a” is any negative number on X axis then

[e] ") [1 acos(180)/1!+(~ acos(180))2/2!+(—acos(180))3/3!+(—acos(180))4/4!+--}

Using product rule of CNWOI for terms with power greater than one and talking R is equal to absolute value
of “a” we get

[e]’am(m)={1—acos(180)/1!+{[a2cos(2x180)]cos( ) +| a”sin(2x180) Jsin ( /2'
+{[a3cos(3x18O)Jcos(9) [a sin( 3><180) sin 0, /3!
+{[a4 cos(4><180)}cos(0) [a sm(4><180 sin /4' }
= {1-acos(180)/11+a’ cos (6, ) /2!-a’ cos( 2)/3!+a cos (6, )/4t+--}
Using addition rule of CNWOI
[1-a/t+a’/2!-a°[31+a" 41+ [cos(ar) = cos(a)
So if “a” is any negative number on X axis
[e] ) =72 cos(«r)

It is same as complex number with imaginary number i.
Now for second CNWOI if 6, is equal to 90 deg i.e. “b” is any positive number on Y axis then

[e] " = [1+ bsin(90)/1!+ (bsin(90))° /2!+(bsin(90))’ /31 (bsin (90))“/4!+--}

Using product rule of CNWOI for terms with power greater than one and talking R is equal to absolute value
of “b” we get
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[e]"™"*" = {1+ bsin(90) 11+ {[ b? cos(2x90) Jcos (6, ) + [bzsm(ZxQO sin(6,)} /2!
+{[1b® cos(3x90) Jcos (6, ) + [ b°sin(3x90) Jsin (6, )} /3!
+{[b* cos(4x90) Jcos (6, ) + [b“sm 4%90) Jsin(6,)} /41+---}

[e]"™"*” = {1+ bsin (90) /11+{[ b? cos (180) Jcos (6, ) + [bzsm (180) Jsin(6,)} /2!

{[bscos 270 ]cos +|b®sin 270 sm /3'

)+
{[b“cos 360 ]cos +[b4s 360 sm }/4' }
)

=[1+bsin(90)/11~b? cos(6,)/2!~ b’ sin(6,) /3!+b* cos (6 ) /41+ -]
Using addition rule of CNWOI
=[1-b*/21+b* /41+ - |cos(ar) + [ b/11-b*/31+-- ]sin(a)
= cos(b)]cos(a)+[sin(b)]sin(a)
So if “b” is any positive number on Y axis
[e]"""®) =[ cos(b)]cos(a)+[sin (b)]sin(c)

It is same as complex number with imaginary number, that is [e]ib =cos(b)+isin(b).
Remember that a complex number with i is equal to a + ib and its equivalent CNWOI is acos(a)+ bsin (a).
Now if 6, is equal to 270 deg i.e. “b” is any negative number on y axis then

[e] """ [1 bsin (270)/11+ (- bsin(270))2/2!+(—bsin(270))3/3!+(—bsin(270))4/4!+---]

Using product rule of CNWOI for terms with power greater than one and talking R is equal to absolute value
of “b” we get

[e] """ = {1-bsin (270) 11+ [ b° cos (2 270) |cos (6, ) + [ b” sin (2 270) Jsin (¢, /2!

{[b3 cos(3x270 ]cos 0, +[b35|n 3><27O sm }/3'
b

(@)

+{[b* cos(4x270) Jcos (¢, )+ [ b* sin (4x270) Jsin(6,)} /41+---|

[e] > {1 bsin(270)/11+ {bzcos(S cos( )+ [bzsm 540 sm }/2'
{[b3 cos(810)]cos( 2)+[b3sm 810 sm /3'
{[b“cos(loso)]cos(e) [b“sm 1080 sm }/4' }

[e] ") {1 bsin(270)/11+ {[bzcos(lso)Jcos( ) )+ [bzsm 180 sm /2'
{[b%os(goﬂcos( ) b‘°’sm 90 sm }/3'
+{[b4cos(360)}cos(0) [b“sm 360 sm }/4' }

=[1-bsin(270)/11-b? cos (6, )/2!+ b’ sin (6, ) /31+b* cos(6,) /41+- ]
Using addition rule of CNWOI

=[1-b*/21+b* /414 Jcos () + [ ~b/11+b* /314 ]sin ()

[1-b°/21+b* /41+---]cos(a) [ b/11—b?/31+--- Jsin(a)

=[ cos(b) Jcos(er)—[sin(b) sin(c)
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So if “b” is any negative number on Y axis
[e] ") =[cos(b)]cos(ar) ~[sin(b) ]sin ()
It is same as complex number with imaginary number i, that is [e]fib =cos(b)-isin(b).
7.De Moivre Theorem (for Finding Power of Complex Number)
In complex number if n is a positive integer, then
[cos(6)+isin(0) " =cos(ng)+isin(ng) ([2], p.15]

Proof of this theorem in complex number theory without “i” (CNWOI) is as follows
Let a+ib isany complex number
Its equivalent CNWOI is [ acos(6)+bsin(8)] now we have to prove that

[acos(6)+bsin(9)}n =ccos(n@)+dsin(nd) (1)

where ¢=R"cos(ng) & d =R"sin(nd) are the numbers came out after multiplying same CNWOI “n” times
and 6 =tan"(c/d).
Formula for multiplication of two CNWOI is

[RR, cos(6; +6,)]cosa +[ RR,sin(6, +6,)|sina
where
a=tan([RR, cos(6,+6,) |/[RR,sin(6,+6,)])

Since we were multiplying same CNWOI “n” times
R, =R, =R, =---=R, =R (some modulus/radius associated with given CNWOI)

6,=0,=6,=---=6, =60 (some angle associated with given CNWOI)
So product is
[acos(6)+bsin(#)]" =[ RxRx--xRcos(0+6+-+6)]cosa +[ RxRx---xRsin(@+0+:+0) [sina
[acos(6)+bsin(6)] = [R” cos(nH)J cosa +[R” sin(ne)]sin a
where
a =tan™* (R" cos(n@)/R"sin(n))

o will be equal to né.
Putting this in Equation (1) we get

[acos(6)+ bsin(e)}n =ccos(nd)+dsin(nd)
where

¢ =[R]" cos(ng) and d =[R]"sin(n)

Example
Let 6+8i isany complex number. Now we find out its cube using De Moivre theorem of CNWOl i.e.
[acos(6)+bsin()] =ccos(nd)+dsin(ng)
(6+8i)3 is equal to [6005(19)+85in(¢9)]3 in CNWOI
6 =tan™(6/8) =53.1301
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R =6c0s(53.1301) +8sin(53.1301)
R=6x0.6+8x0.8=3.6+6.4=10
R =10

Now using De Moivre theorem
[6cos(0)+8sin(@ [(10)3 cos(3x53. 1301)] cos(oz)Jr[(lo)3 sin (3><53.1301)Jsin (@)
=[(1000)cos(159.3903) |cos(a ) +[ (1000)sin (159 3903) Jsin(a)
=[(1000)(-0.936) ] cos () [(1000 0.352)]sin(a
=-936c0s(r)+352sin (a)
a =tan ™ (-936/352) =159.3903 = 30
[6cos(6)+8sin(0)] =-936c0s(30) + 352sin(30)

This is equal to cube of 6+8i.

8. De Moivre Theorem (for Finding Root of Complex Number)

For finding root of complex number take compliment of De Moivre theorem (for finding power of CNWOI).
If n is a positive integer, then n" root for any CNWOI [a cos(8)+bsin (9)} is equal to

[acos(«SP)ersin(é?)]]/n =ccos(d/n)+dsin(6/n)
where ¢=RY"cos(6/n) & d =R""sin(#/n) and @=tan""(c/d)=6/n.

Example

Let —936+1i352 isany complex number. Now find out its cubic root using De Moivre theorem of CNWOI
[acos(ﬁ)ersin(é?)]]/n =ccos(6/n)+dsin(6/n) 1)

where
c=R""cos(f/n) &d =R"sin(/n) and @=tan"*(c/d)=6/n o)

[-936c0s(6)+352sin(6) ]

Here 6 = tan™ (-936/352)=159.3903.
Putting value 6 in CNWOI —936cos(&)+352sin(6) we getR

—936c0s(159.3903) +3525in (159.3903) = —936 x (—0.936 ) + 352 x ( 0.352) = 876.096 +123.904 = 1000
R =1000
Putting this R and @ in Equation (2) we getc & d
c= (1000)”3 €05(159.3903/3) =10x c0s(53.1301) =10x 0.6 = 6
and
d= (1000)]/3 sin(159.3903/3) =10xsin(53.1301) =10x 0.8 =8
Putting these values of ¢ & d in Equation (1) we get

[-936.c0s(159.3903) + 352sin (159.3903) |"* = 6.cos(53.1301) + 8sin (53.1301)

This is a cubic root of complex number —936 +i352.
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9. Solution of Quadratic Equation Using CNWOI

Quadratic equations (ax2 +bx+c= 0) for which b? —4ac < 0.
First find out @ (i.e. angle/argument) and R (i.e. modulus/radius), which are equal to

0=tan™" [—b/2a]/[(abs (b2 - 4ac))/2a}
R= (—b/2a)cos(49)+(4 labs(b2 —4ac))/2asin(9)

Hence roots for quadratic equation are
R(cos(6)+sin(6)) and R(cos(8)-sin())

9.1. Example 1
Let x*+x+1=0 forwhich b®-4ac<0, then (-b/2a)=-1/2=-0.5 and
( abs (b’ —4ac)) /2a = 0.8660254.

@ i.e. angle/argument and R i.e. modulus/radius are equal to

o =tan" ((—b/Za)/ ( fabs (b7 - 4ac)) /2a) — tan"* (~0.5/0.8660254) = 120
R= (—b/2a)cos(¢9)+(4 [abs (b® —4ac))/2asin (6) =-0.5¢c0s(120) +0.8660254sin (120)

= (—0.5) X (—0.5) +0.8660254 x0.8660254 = 0.25+0.75=1
Hence roots for quadratic equation are
(cos(120)+sin(120)) & (cos(120)-sin(120))
Putting first root in quadratic equation we get
[ cos(120)+sin (120)]2 +¢05(120) +sin (120) +1= [ cos(240) +sin (240) |+ cos(120) +sin (120) +1
=-0.5+(~0.8660254) +(~0.5)+0.8660254 +1= -1+ 0+1=0
Putting second root in quadratic equation we get
[ cos(120)-sin (120)]2 +¢05(120) —sin (120)+1= cos(240)—sin (240) ] + cos (120) —sin (120) +1
=-0.5+0.8660254 + (—0.5) -0.8660254+1=-1+0+1=0

9.2. Example 2

Let x*-10x+40=0 forwhich b®-4ac<0, then (-b/2a)=5 and (Jabs(bz—4ac))/2a=3.8729833.

@ i.e. angle/argument and R i.e. modulus/radius are equal to

6=tan" ((—b/Za)/(, [abs (b® 4ac))/2a) = tan ! (5/3.8729833) = 37.761244

R= (—b/2a)cos(9)+(‘ fabs (b? —4ac)) /2asin (6) = 5c05(37.761244) + 3.8729833sin (37.761244)
—5x0.7905604 + 3.8729833x 0.6123724 = 3.9528471 + 2.3717082 = 6.3245553

Hence roots for quadratic equation are
6.3245553 % (c0s (37.761244) +5in (37.761244)) & 6.3245553x (cos(37.761244) —sin (37.761244))

Putting first root in quadratic equation we get
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[ 6.3245553(cos (37.761244) +sin (37.761244))]2 +(~10)x6.3245553
x(c0s(37.761244)+sin (37.761244)) + 40
= 40x] cos(75.522488) +sin (75.522488) | + (~63.245553) x (c0s (37.761244) +sin (37.761244)) + 40
=10+38.729833+(-50) +(—38.729833) +40=-40+40=0
Putting second root in quadratic equation we get
[ 6.3245553cos (37.761244) —sin (37.761244))]2 +(-10)x6.3245553
x(c0s(37.761244) —sin (37.761244))+ 40
= 40| cos(75.522488) —sin (75.522488) | + (~63.245553) x (cos (37.761244) —sin (37.761244)) + 40
=10-38.729833+(-50) — (—38.729833) + 40 =-40+40 =0

9.3. Example 3
Let 3x’—4x+2=0 forwhich b®-4ac<0,then (-b/2a)=0.6666667 and

(, /abs(b2 —4ac)) /2a =0.4714045.

@ i.e. angle/argument and R i.e. modulus/radius are equal to

o =tan" ((—b/Za) / ( fabs (b2 - 4ac)) /Za) ~ tan"* (0.6666667/0.4714045) = 35.26439

R= (—b/2a)cos(9)+( abs(b2 —4ac))/2asin (0) =0.6666667 cos(35.26439) +0.4714045sin (35.26439)

=0.6666667 x 0.8164966 + 0.4714045x 0.5773503 = 0.5443311+0.2721655 = 0.8164966
Hence roots for quadratic equation are

0.8164966 x (cos(35.26439) +sin (35.26439)) & 0.8164966 x (cos (35.26439) -sin (35.26439))
Putting first root in quadratic equation we get
3x[ 0.8164966 x (cos (35.26439) +5in (35.26439)) | +(~4)x 0.8164966
x(c0s(35.26439) +sin (35.26439)) + 2
=0.6666667 +1.8856181+(-2.6666667)—1.8856181+2 = —2+2 =0

Putting second root in quadratic equation we get

3x[ 08164966 (cos(35.26439) —sin (35.26439)) | +(~4)x 0.8164966

x(cos(35.26439) —sin (35.26439)) + 2
=0.6666667 —1.8856181+(—2.6666667)—(—1.8856181)+2=-2+2=0

9.4. Example 4

Let —4x*+2x—7=0 forwhich b?-4ac<0, then (-b/2a)=0.25 and

(‘ /abs(b2 - 4ac)) /Za = -1.2990381.

@ i.e. angle/argument and R i.e. modulus/radius are equal to

0=tan ((—b/Za) / ( fabs (b - 4ac)) /Za) = tan " (0.25/-12990381) = —79.106605 = 280.89339
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R= (—b/2a)cos(9)+(\/m ) /2asin (6) = 0.25cos(280.89339) + (~1.2990381) sin ( 280.89339)
— 0.25x0.1889822 + (~1.2990381) x (~0.9819805) = 0.0472456 +1.2756301 = 1.3228757
Hence roots for quadratic equation are
13228757 cos(280.89339) + sin (280.89339) ] & 1.3228757[ cos(280.89339) - sin (280.89339)]

Putting first root in quadratic equation we get
. 2
—4x [1.3228757 x (cos (280.89339) +sin (280.89339))} +2x1.3228757

x[ cos(280.89339) + sin (280.89339) |~ 7
— 6.5+2.5980762 +0.5—2.5980762 7 =7—7 =0

Putting second root in quadratic equation we get
R 2
—4x [1.3228757 x (cos(280.89339) —sin (280.89339))] +2x1.3228757

x[ cos(280.89339) —sin (280.89339) ] - 7
= 6.5— 25980762+ 0.5+2.5980762~7 =77 =0

9.5. Example 5

Let x*+1=0 forwhich b?-4ac<0, then (-b/2a)=0 and (c abs (b —4ac))/2a =1.
First find out @ i.e. angle/argument and R i.e. modulus/radius which are equal to

6 =tan™ ((—b/Za)/(‘ [abs (b —4ac))/2a) =tan*(0/1) =90
R= (—b/2a)cos(0)+(4 [abs(b2 —4ac))/2asin (6)=0cos(90)+1sin(90) =1

Hence roots for quadratic equation are
1x[ c0s(90)+sin(90)] & 1x[cos(90)-sin(90)]
Putting first root in quadratic equation we get
[1x(cos(90) +sin(90)) ] +1
[1x(cos(180) +5in (180)) [+1=-1+0+1=0

Putting second root in quadratic equation we get
[1x(cos(90) —sin(90)) | +1
[ 1x(cos(180) —sin (180)) [+1=-1-0+1=0

10. About Square Root of Negative Real Number

Imaginary number i= J-1 :(—1)]/2 where —1 is a negative real number. Its modulus or radius is equal to 1
and angle is equal to 180 degrees, so using De Moivre theorem of CNWOI

[acos(8)+bsin (9)]1/" =ccos(d/n)+dsin(6/n)

where ¢=R""cos(d/n) and d =R""sin(d/n) and @=tan"*(c/d)=6/n since (-1)** has R =1 and 4 =
180 deg calculating ¢ & d using above formula
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¢ =(1)" cos(180/2)
c=c0s(90)=0
and
d = (1)"* sin(180/2)
d =sin(90)=1
So putting values of ¢ & d in above formula we get

(—1)1/2 =0xc0s(90)+1xsin(90)

(~1)"% = 0+sin(90)

(~1)"* =sin(90)

It is equivalent to the graphical position and value of imaginary number “i”.

D. B. Gode

So the square root of negative number is equal to the square root of same positive real number but with an an-

gle of a 90 deg to real line.

Why the square root of negative number is at 90 deg to real line? It is in the roots of rules of multiplication

where
Positive x Positive = Positive

Positive x Negative = Negative

Negative x Negative = Positive

These rules build a limitation when we come across a situation where we need square root of negative number.

There is no negative number multiplied by itself will give a negative number.

Complex number is an answer to this limitation. Complex number is nothing but an interaction of two mu-
tually opposite number systems, particularly in multiplication rules. Their individual and combine behavior un-

der multiplication operation are given below.

10.1. When Only X Axis Is Considered It Gives
Positive x Negative = Negative

i.e. acos(0) x —bcos(180) using multiplication rule of CNWOI is equal to [-abcos(180)]
and
Negative x Negative = Positive

i.e. —acos(180) x —bcos(180) using multiplication rule of CNWOI is equal to [abcos(0)].

10.2. When Only Y Axis Is Considered It Gives
Positive x Negative = Positive

i.e. asin(90) x —bsin(270) using multiplication rule of CNWOI is equal to [abcos(0)]
and
Negative x Negative = Negative

i.e. —a sin(270) x —bsin(270) using multiplication rule of CNWOI is equal to [-abcos(180)].

10.3. But Jointly They Give Back Traditional Results Such As
Positive x Negative = Negative

i.e. acos(0) x —bsin(270) using product rule of CNWOI is equal to —absin(270) or
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—acos (180) x bsin(90) using product rule of CNWOI is equal to —absin(270)
and
Negative x Negative = Positive

i.e. —acos(180) x —hsin(270) using product rule of CNWOI is equal to absin(90).

11. Final Reflection

As said earlier in graphical representation of complex number, the length of i shown on vertical axis is equal to 1; it
is a contradiction since value of imaginary number i is not known. Also division process is not smooth, for di-
viding one complex number with other needs to multiply it by conjugate of divisor. But in CNWOI theory it
looks smooth and exactly opposite to the process of multiplication.

If addition, subtraction, multiplication, division, power and root can be found/calculated without imaginary
number “i”, presented in this paper, so there is nothing mystical or imaginary about imaginary number “i”.
Complex numbers exist without imaginary number “i”.
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