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Abstract 
This paper shows that the experimental results of quantum well energy transitions can be found 
numerically. The cases of several ZnO-ZnMgO wells are considered and their excitonic transition 
energies were calculated using the finite difference method. In that way, the one-dimensional 
Schrödinger equation has been solved by using the BLAS and LAPACK libraries. The numerical re-
sults are in good agreement with the experimental ones. 
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1. Introduction 
ZnO is a very abundant material in nature, with very interesting physiochemical properties: it is non-toxic and 
presents high chemical stability. It possesses a direct and large band gap (3.37 eV) at room temperature. Its ex-
citon binding energy of the order of 60 meV, enables the design of laser devices operating at room temperature. 
Its heterostructures are very interesting for optoelectronic applications.  

In general, the search for the eigenstates of the Hamiltonian is complex. Even analytically soluble case of the 
hydrogen atom is not strictly in simple form if we neglect the coupling with the electromagnetic field. The 
Schrödinger equation, even in one dimension, admits precious few analytic solutions so that in the other cases, it 
is necessary to use various approximation techniques. Perturbation theory provides analytical expressions in the 
form of asymptotic expansions around undisturbed exactly solvable problem. Numerical analysis allows the ex-
ploration of inaccessible situations by perturbation theory. In fact the continuous Schrödinger equation is not 
always the most reasonable choice for realize modeling of semiconductors quantum well, superlatice and nano-
structures devices. However, the dependency of the energy state on the wave vector dispersion equation for a 
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bulk semiconductor is very close to a discrete model. And as we know, the realistic physics of the Schrödinger 
equation arises from its equivalence to a tightbiding model for crystalline solid [1], in both the bulk and quantum 
confinement cases. Furthermore, day-to-day, the analytic solution for tight-binding model of quantum wells has 
not been presented. 

This study presents a numerical model that allows retrieving transition energies of excitons measured in a 
ZnO-ZnMgO or other quantum-well. This model is based on the finite difference method [2] [3]. 

First, we will present the results of experimental measurements of transition energies of excitons in ZnO 
quantum well. Then, we propose an one-dimensional model of potential barrier which describes the electronic 
behavior of these wells. Thus, the corresponding model, which is governed by the Schrödinger equation in 
steady state, is solved here with the finite difference method. Finally, we compare the numerical results with the 
experimental results. 

2. Experimental Results and Model 
ZnO-ZnMgO quantum wells have been realized with very high crystallographic and optical quality. 

2.1. Experimental Details: Growth and Structural Properties 
The samples were grown by plasma-assisted MBE, the metals (Zn and Mg) being evaporated using Knudsen 
cells and atomic oxygen (O) being activated in a radio-frequency plasma cell [4]. The residual carrier concentra-
tion in the vicinity of the ZnO QWs is estimated to be less than 1016 cm3. 

We considered three samples. The first contains only one quantum well of width 1.6 nmwL = . The second 
sample contains two quantum wells of width 2.1 nm and 3.6 nm, respectively. The last and third sample pos-
sesses one quantum well of width 10 nmwL = . A schematic diagram (Figure 1) and details (Table 1) of the 
quantum structure are presented. 

The Mg content of the barrier layers was in the range of 21% - 22%, varying slightly from sample to sample. 
The QWs were grown at 480˚C i.e. the investigated samples do not contain any cubic inclusions. 
 

 
Figure 1. Quantum structure. 

 
Table 1. Details of quantum structure. 

QW width (nm) 1.6 2.1 3.6 10 

Mg content (%) 20 25 25 17 

Barrier thickness (nm) 200 95 95 130 

Buffer thickness (nm) 100 680 680 510 
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2.2. Structural Characterization and Optical Properties 
X-ray reciprocal space maps of samples grown at 480˚C were performed on the 10.5  and 11.4  reflections. 
While these maps suggest that the ZnMgO barriers are at least partially relaxed for Mg contents larger than 40%, 
heterostructures having Mg contents in the range of 20% are found to be perfectly lattice matched [4]. The high- 
quality ZnO-ZnMgO QWs grown on sapphire substrate (Al2O3(0001)), was demonstrated by means as RHEED, 
AFM and PL studies. PL spectra of one of these samples recorded at 10 K are displayed in Figure 2. The high 
energy peak (3.82 eV) corresponds to the PL emission of the barrier layer with Mg content of 21% - 22%, while 
the emission at 3.37 eV corresponds to the free exciton recombination from the ZnO template and the other line 
3.535 eV is the excitonic emission of the QW of width 1.6 nm. 

Figure 3 concerns the low temperature PL spectra from a 10 nm thick QW (b) embedded in a Zn0.83Mg0.17O  
 

 
Figure 2. PL spectrum of ZnO QW (Lw = 1.6 nm). 

 

 
Figure 3. QWs 3.6 nm, 2.1 nm, and 10 nm. 
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barrier layer grown on R-plane sapphire substrate and from a sample containing two QWs (a) [5]. The excitonic 
emission from the 10 nm QW emits at 3.39 eV, which is also the energy of the excitonic band gap of A-plane 
ZnO, while the PL of the Zn0.83Mg0.17O barrier layer peaks at 3.82 eV. 

Figure 3(a) corresponds to the PL lines of a sample containing two QWs of width (3.6 nm) and (2.1 nm), 
emitting at 3.44 eV and 3.451 eV, respectively. The widths of the QWs were chosen to be sufficiently different 
so that the corresponding PL emission lines are well separated [5]. So, for the band conduction electrons, a po-
tential barrier of 430 meV and 447 meV is formed. The behavior of the electron in the QW is described by the 
Schrödinger equation: 

( ) ( ) ( ) ( )
2

*
d d
d d2 n n nV x x E x
x xm x

ψ ψ
  
− + =      

                         (1) 

where nE  is the electron confinement energy. The correction potential energy due to the difference effective 
mass between the barrier and the quantum well is neglected. The model we propose able to find the energy con-
finement of the electron in the QW and then their stationary states. Contrary to other computational approaches 
[6], it is more direct. A schematic description of the potential is presented in Figure 4. 

3. Use of the Finite Difference Method 
The Finite Difference method for solving the 1D Time Independent Schrödinger Equation is presented. This 
method is a simple and very important tool for physics and engineering where the Schrödinger equation appears 
very often in the description of certain phenomena [7]. 

3.1. Stationary States in 1D Potential 
This is described by the following equation: 

( ) ( ) ( )
2 2
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ψ ψ∂
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This is equivalent to 
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This latter can be normalized with 

( ) ( )2

2
, and .e
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m

V x V x E Eα α α= = − = 



                          (4) 

Thus we get 

( ) ( ) ( )
2

2 0n n nx V x E x
x
ψ ψ∂  + + = ∂

                              (5) 

this equation will be solved with the Finite Difference Method (FDM). 
 

 
Figure 4. Potential barrier. 
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3.2. Finite Difference Method 
We consider a function specified ( )n xψ  which satisfies the Schrödinger equation, in the interval  
] [2, 2w wL L− . ( )n xψ  fulfills the boundary conditions ( ) 02n w nLψ ψ− =  and ( ) 12 N

n w nLψ ψ += . We con-  

sider an one-dimensional mesh with N + 2 points 2i wx L i x= − + ∗∆ , where 
1

wLx
N

∆ =
+

 and we define  

( )i
n n ixψ ψ≈ , ( )i

iV f x= ; 0,1, , 1i N= +
. 

The FDM is based on the Taylor expansion. So, with the centered difference approximation, the second order 
derivative of the stationary wave functions can be approximated by the following: 

( ) ( ) ( ) ( ) ( )
2

2
2 2

2
.n n n nx x x x x x
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                       (6) 

Thus, the 1D Time Independent Schrödinger Equation becomes a set of algebraic equations 
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This is equivalent to following 
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Defining 
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one gets a linear system of N equations, which can be written in a matrix form [3]. 
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To solve this 1D equation means to determine the eigenvalues nE  and thus the eigenvectors nψ . Equation 
(10) has been solved with FORTRAN, using the librairies of BLAS and LAPACK for eigenvalue/eigenvactor 
problems. Particularly, the parameters of our QWs allow us to determine the diagonal elements of the symmetric 
matrix M. Thus, the eigenvalues of M have been calculated and the energy levels En have been determined. The 
obtained results are shown in Table 2. 

4. Verification and Discussions 
A verification of the proposed method is done, considering the results of three samples. It concerns four quan-
tum wells whose widths are 1.6 nm, 2.1 nm, 3.6 nm et 10 nm; respectively. 

The numerical calculation, carried out for all the wells, allowed to recover the experimental results. If we 
consider the quantum well of width 1.6 nm, the expected emission energies are between 1.45 and 1.65 eV, ac-
cording to the experimental measurements. The energy levels E1 and E2, calculated with the method of finite 
difference, correspond to emission energies of 373 meV and 168 meV, respectively. These values obtained are 
consistent with the experimental results. For the other quantum wells, this agreement between numerical result 
and experience can be observed. These results are summarized in Table 2. 

The proposed numerical method using the finite difference method allows retrieving the experimental values 
of emission energies of unstrained ZnO-ZnMgO quantum wells where the Stark effect has been neglected. 
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Table 2. Numerical results. 

Energy [mev]\QW width Lw = 1.6 nm 
V0 = 447 mev 

Lw = 2.1 nm 
V0 = 430 mev 

Lw = 3.6 nm 
V0 = 430 mev 

Lw = 10 nm 
V0 = 430 mev 

E1 −373 −381 −410 −427 

E2 −168 −241 −350 −417 

E3  −42 −253 −402 

E4   −126 −381 

E5    −354 

E6    −323 

E7    −286 

E8    −254 

E9    −200 

E10    −152 

E11    −102 

E12    −50 

E13    −1 

5. Conclusion 
In summary, we have shown in this paper that the model of one-dimensional quantum wells allows finding ex-
citonic energy levels determined experimentally. By solving the Schrödinger equation with the finite difference 
method, we could recover experimental energy levels with high accuracy. A subsequent study could be interest-
ed in the case of optically coupled quantum wells, superlatices and atomic latices with sinusoidal potential in 
plane. This work can be extended to the diffraction of Gaussian wave under Fraunhofer condition. 
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