
Applied Mathematics, 2014, 5, 2558-2569 
Published Online September 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.516245  

How to cite this paper: Sun, J. and Roveda, J.M. (2014) Robust Optimization for Gate Sizing Considering Non-Gaussian Local 
Variations. Applied Mathematics, 5, 2558-2569. http://dx.doi.org/10.4236/am.2014.516245  

 
 

Robust Optimization for Gate Sizing  
Considering Non-Gaussian Local Variations 
Jin Sun, Janet M. Roveda 
Department of Electrical and Computer Engineering, The University of Arizona, Tucson, USA 
Email: sunj@email.arizona.edu, wml@ece.arizona.edu  
 
Received 1 July 2014; revised 2 August 2014; accepted 11 August 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper employs a new second-order cone (SOC) model as the uncertainty set to capture 
non-Gaussian local variations. Then using robust gate sizing as an example, we describe the de-
tailed procedures of robust design with a budget of uncertainty. For a pre-selected probability 
level of yield protection, this robust method translates uncertainty budgeting problems into regu-
lar robust optimization problems. More importantly, under the assumption of non-Gaussian dis-
tributions, we show that within-die variations will lead to varying sizes of uncertainty sets at dif-
ferent nominal values. By using this new model of uncertainty estimation, the robust gate sizing 
problem can be formulated as a Geometric Program (GP) and therefore efficiently solved. 
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1. Introduction 
Due to the decreasing feature sizes, the advanced sub-wavelength semiconductor fabrication techniques fail to 
control precisely dopant diffusion [1] [2] and are unsuccessful in printing geometric features accurately [3]. 
Consequently, a significant amount of process variations are introduced into the integrated circuits. These 
variations have caused substantial changes in the device and interconnect electrical parameters. The parametric 
yield of manufacture process and performance are thus in jeopardy. This is the main reason why process 
variations are the key topics of recent research studies. 

Most research publications [1]-[3] classify process variations into inter-die or global and intra-die or local two 
components. Here, the global variations include variations between different chips, either in the same wafer or 
different wafers. Local variations include variations existing in different devices or interconnect within the same 
chip. Global variations are in general modeled as Gaussian distributed random variables. Local variations, on the  
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other hand, are not easy to capture. One reason is that local variations, also random in nature, exhibit strong 
spatial correlations. To illustrate, two devices or interconnects are strongly correlated if they are spatially close 
to each other. If they are far apart, the correlations may be neglected. In addition, [4] and [5] have pointed out 
that it is not accurate to use Gaussian distribution to model local variations. In particular, [4] suggested a new 
statistical model, the Matern model, to capture the local variations based on the measurement data for 90 nm 
chips. The contributions of this paper can be summarized as follows. First, we propose a new Second-Order 
Cone (SOC) uncertainty model for characterizing parameter variations. This new SOC model extracts the 
quadratic and even higher order spatial variations with regard to correlations. Given certain probability for 
performance, we show how to translate budget uncertainty problems to yield-guaranteed robust optimization 
problems. By employing the SOC estimation model under yield-guaranteed timing constraints, we can translate 
the robust gate sizing problem into a standard GP formulation and conduct a budget of uncertainty between 
timing yield and gate size variations. Finally, we thoroughly verify the accuracy of our models against Gaussian 
distribution based models with a number of circuits. The rest of the paper is organized as follows. Section 2 
describes the concepts of budget of uncertainty, non-Gaussian distributed variations and their impact on defining 
uncertainty set for variation estimation. Section 3 introduces the Second-Order Cone (SOC) estimation model 
for characterizing parameter uncertainties. Section 4 develops the proposed robust optimization technique by 
using the SOC uncertainty model and the notion of uncertainty budgeting. Section 5 demonstrates experi- 
mental results, and finally Section 6 concludes this paper.  

2. From Uncertainty Budgeting to Robust Gate Sizing 
Most research works on timing analysis and gate sizing use a posynomial function to model gate delay for 
individual components [6]-[10]. In [8] the authors proposed a class of generalized posynomial models to 
approximate gate delays. The timing constraints can be represented in the following form: 

( ) 1 2
1 2

1 1 1

k k nk ik
nK K

a a a a
j k n k i

k k i
d X c x x x c x

= = =

 = ⋅ = ⋅ 
 

∑ ∑ ∏                         (1.1) 

where the j-th constraint function ( )0jd X  represents the path delay at gate j , which is in posynomial form.  
If the multiplicative coefficients kc ’s are allowed to be any real number, then ( )f X  is called a signomial. As  
there are no restrictions on the sign of coefficients kc ’s, signomials are expected to estimate delay functions  
more accurately. In this work, we employ the signomial model for gate delay approximation. We use an 
automated procedure of posynomial/signomial fitting to determine the best-fit coefficients, exponents and the 
number of terms in the signomial delay function. The fitting procedure starts with a single monomial term for 
delay approximation, and gradually increase the number of monomial terms in the signomial function until the 
fitting error is less than a pre-determined threshold value. 

Design optimization affected by process introduced variations has been a focus of recent research efforts 
[11]-[14]. How to formulate the design optimization depends on the models of variations. Indeed, it has also 
been pointed by [15] that “solutions to optimization problems can exhibit remarkable sensitivity to perturba- 
tions in the parameter”. Process variations are generally modeled as random variables. A nature way is to formu- 
late design optimization affected by parameter uncertainty as a stochastic optimization problem. In this section 
we will use gate sizing, a typical circuit design problem, as an example to explain how to employing the notion 
of uncertainty budgeting to translate a in general NP-hard stochastic problem [16] into a tractable robust 
optimization problem. 

Due to process variations, the components of vector 0X , i.e. the gate sizes, have been assigned random 
variations around their nominal values. In this sense gate sizes are no longer deterministic quantities but random  
variables. As a consequence the gate delay becomes variational as well. Let [ ]1 2, , , nX x x xδ δ δ δ=   represent  

the variations in gate sizes, the objective function i i
i

xα∑  and constraint function ( )0jd X  in (1.1) will be  

replaced by ( )0i i i
i

x xα δ+∑  and ( )0jd X Xδ+  respectively. Therefore, the gate sizing problem under  

parameter uncertainties becomes the following stochastic optimization formation:  
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As shown in (1.2), stochastic optimization tries to find the optimal nominal design parameters such that under 
the impact of parameter variations around these nominal values, the objective function is optimized in an 
average sense (i.e. the mean value), and constraints are satisfied with a probabilistic guarantee η . 

The most simplistic formation of uncertainty set is to use interval information and model a parameter under  
variation as a symmetric and bounded random variable 0ix  that takes values in [ ]0 0ˆ ˆ,i i i ix x x x− + . The half- 
length ˆix  measures the precision of the estimate. Associated with the uncertain data ix , we define the random  
variable ( )0 ˆi i i ix x xγ = −  which obeys an unknown but symmetric distribution, and takes values in [ ]1,1− .  
All resulting iγ ’s form an uncertainty set:  

[ ]1 2, , , nγ γ γ=                                 (1.3) 

The main limitation of robust optimization is the lack of probabilistic description of parameter uncertainty and 
the conservativeness of optimization results due to the assumption of a complete guarantee of full yield. In this 
case, we might ask for probabilistic guarantees for the robust solution that can be computed a priori, i.e. as a 
function of the structure and size of the uncertainty set. This provides a notion of a budget of uncertainty, which 
allows the designer a level of flexibility in choosing the tradeoff between robustness and performance, and also 
allows the ability to choose the corresponding level of probabilistic protection. To be specific, the robust 
optimization with uncertainty budgeting can be formulated as:  
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where stands for the uncertainty set, of which the size can be computed a priori given a pre-selected η . Note 
that uncertainty set   is usually modeled as a function of both nominal design parameters and probabilistic 
guarantee. Still use the example of interval uncertainty set (1.3) to interpret, we define a parameter as a budget 
of uncertainty for timing constraint:  

1
.

n

i
i
γ

=

≤ Γ∑                                    (1.5) 

The parameter Γ , which belongs to [ ]0,n , is interpreted as the maximum number of parameters that can 
deviate from their nominal values. If 0Γ = , all iγ ’s are forced to 0, and there is no protection against 
uncertainty. If nΓ = , the timing constraint is completely protected against uncertainty, which yields a very 
conservative solution. If ( )0,nΓ∈ , the designer makes a trade-off between the protection level of the 
constraint and the conservativeness of the solution. In later part, we show that by employing the concept of 
second order cone, there exists a convenient and efficient uncertainty set that provides such flexibility at 
different level of yield protection.  

3. Parameter Variations and Uncertainties Characterization 
The two main problems in budgeting uncertainty in robust optimization are to set up an appropriate uncertainty 
set for parameter uncertainty and establish the dependency of probabilistic guarantee on the structure and size of 
uncertainty set. This section first discusses estimation models for characterize parameter variability. We start 
with introducing the previously used UE method and its disadvantages. A new USOC method will then be 
proposed to overcome the limitations of UE method. 



J. Sun, J. M. Roveda 
 

 
2561 

Ellipsoidal uncertainty set (UE) [11] [17] [18] is widely used to model parameter uncertainty, by using the 
maximal inscribed ellipsoid inside the variation region. For any vector nX R∈  with random perturbation 
around its nominal value 0X , the parameter variability can be estimated by an uncertainty ellipsoid in nR , 
which has the form [19]:  

( ) ( ){ }T 1
0 0 1X X X P X X−− − ≤                             (1.6) 

where P  represents the covariance matrix. The nominal vector 0X  is the center point of the uncertainty 
ellipsoid. An alternative representation of an uncertainty ellipsoid is:  

{ }1 2
0 2 1 .X P u u+ ≤                                   (1.7) 

The vector u  is introduced to characterize the movement of X  around 0X , and 
2u  is the 2-norm of 

vector u . The parameter variations are considered to be bounded within the ellipsoid region. Covariance matrix 
P  determines how far the uncertainty ellipsoid extends in every direction from 0X . The lengths of radiuses 

1λ  and 2λ , and their directions are given by the eigenvalues of matrix P . 
In this work we propose a novel uncertainty set to model parameter uncertainties by employing the concept of 

a second order cone (SOC). Mathematically, a unit second order cone of dimension k  is defined as [20]:  

1, ,kU
U R r R U r

r
−   ∈ ∈ ≤  

   
                              (1.8) 

where U  is a vector of dimension 1k − . For the random vector X  of gate sizes, by introducing an auxiliary 
variable r , the variation vector Xδ  can be represented by a second order cone, which is defined as a set:  

( ){ }02 2
, , 0X s X X X s sδ δ = − ≤ ≥                            (1.9) 

where T
2X X Xδ δ δ=  is the 2-norm of variation vector Xδ . A general-form second-order cone can be  

extended from the unit case in (1.9):  

( ){ }T
2,X s A X b c X dδ δ δ+ ≤ +                             (1.10) 

where problem parameters are l nA R ×∈ , nb R∈ , nc R∈  and nd R∈ . For illustrative purpose, in what 
follows we use the simple case of unit SOC to explain the advantageous of SOC uncertainty set over ellipsoidal 
uncertainty set. Referring to the example shown in Figure 1(a), a 3-dimensional (3D) cone has continuously 
changing radiuses to their 2D slices. The intersections of the 3D cone and feasible region thus provide the corner 
case distances to the nominal case. For example in Figure 1(a), the cone-feasible region intersection captures 
one corner case (Point A) with radius 1s . If we push the cone through the feasible region continuously, more 
corner cases with different distance to the nominal point will be captured. As an example, a new corner point B 
is identified with a different radius 2s . The elastic radius s  in fact restricts how far the parameter variations 
can perturb from their nominal values. 

Having explained the formation of SOC uncertainty set, a nature question is how to determine an explicit 
form of maxs  in terms of nominal design parameters. We use a fitting technique to find out the relationship 
between maxs  and nominal gate sizes by sampling gate size variations from their distribution information. As 
introduced before, local variations are difficult to capture, especially in the presence of strong spatial correlation. 
Following [4] [21] [22] the die can be considered as consisting of a grid of 1 2n n×  locations. A location on the 
chip will be denoted by ( ),l x y=  where x  is the horizontal coordinate and y  is the vertical coordinate. 
Each grid field will be considered as a random variable with mean kµ , where kµ  does not depend on the 
location l  but is dictated by the inter-die variations and varies from chip to chip. The parameter variations at 
any two locations l  and l′  on the same chip will be correlated. The correlation is typically strong at nearby 
locations and weak for locations far away from each other. The covariance between two locations l  and l′  
only depends on the distance h l l′= −  between l  and l′ . Then the distribution of parameter variation is 
completely determined by its covariance function, which can be written as:  

( ) ( )( ) ( )Cov , .l lx l x l l lσ σ ρ′′ ′= −                           (1.11) 
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(a)                                                    (b) 

Figure 1. Basic Conceptual Explanation. (a) The 3D representation for 2D parameter variations; (b) Robust 
feasible region in robust optimization.                                                              

 
The parameter lσ  is a scale parameter ( 2

lσ  is the variance of ( )x l ) and the function ρ  is called the 
correlation function. Note that the scale parameters lσ , lσ ′ , and the correlation function ρ  may be different 
for different grids. 

A simple and natural model that allows for correlation between different locations is the exponential model. 
For this model the correlation function ρ  decays exponentially as a function of the distance h l l′= − , i.e.  

( ) e , 0.ih
ih λρ λ−= ≥                                  (1.12) 

Note that as iλ  increases the correlation decays faster as a function of the distance. The exponential model is 
attractive because of its simplicity but it is not very flexible in capturing a wide range of correlation structures. 
Another popular and more flexible class of correlation functions is the Matern class [23], in which correlation 
function is parameterized by two parameters, 1iθ  and 2iθ , and has the functional form:  
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where ( )α ⋅  denotes the modified Bessel function of the second kind of order α , and ( )Γ ⋅  denotes the 
Gamma function. According to Matern correlation function defined in (1.13), and assuming that parameter 
variation is truncated at its 3σ  value, we perform random sampling and capture the furthest variation deviated 
from the nominal values. This distance will then be identified as the maxs  value at this particular design point 

0X . Having a set of simulation data pairs ( )0 max,X s  collected throughout the range of possible parameter  

values, we assume maxs  has a 1) linear 
1

max
1 1 1

n n n

i i ij i j
i i j i

s c x d x x k
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= = = +

= + +∑ ∑ ∑ , and 2) quadratic  
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n n n n

i i i i ij i j
i i i j i

s c x d x e x x h
−

= = = = +

= + + +∑ ∑ ∑∑  relationship with the nominal values of gate sizes, and performed  

nonlinear regression and linear regression, respectively. The fitting results show that linear fitting yields 
considerable approximation error compared with quadratic fitting. More importantly, the maximum approxi- 
mation error of linear fitting indicates that linear assumption of maxs  function tends to yield overly optimistic 
estimation of parameter variations, i.e. to produce a smaller size of SOC estimation region than required. This 
result validates the necessity of quadratic fitting in SOC modeling. In addition, linear-form SOC model causes 
significant delay violations (up to 9%). On the contrary, because of its high approximation accuracy, the delay 
violation caused by quadratic-form model is as low as <1%, which demonstrates that the gate sizing results are 
robust to random parameter variations. To reduce the computation cost of fitting SOC set size, we assume that 
the fitting parameter A  is diagonal, and parameter 0b = .  

4. Uncertainty Budgeting with SOC Uncertainty Set 
This section discusses how to conduct budgeting of uncertainty based on the SOC uncertainty set defined in 
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Section 3. We first explain the physical meaning underlying uncertainty budgeting for robust optimization. Then 
we provide a first-order approximation to associate yield protection level with the size of the SOC estimation set, 
which will be further incorporated in the optimization framework. By employing the yield-guaranteed SOC set 
the robust gate sizing problem can be finally formulated into a standard geometric program. 

4.1. Feasible Region in Robust Design 
We claim that it is necessary to distinguish the feasible region in deterministic gate sizing and that in robust gate 
sizing. In the deterministic case, if no parameter variations are considered, the backward mapping of timing 
constraints (as well as the bounding constraints) form a feasible region in design space, as shown in Figure 1(b) 
(denoted by the solid line). We define this region as deterministic feasible region:  

( ){ }spec min maxDFR : , .jX d X T X X X≤ ≤ ≤                      (1.14) 

Any design point included in this region is a feasible design candidate in deterministic gate sizing. Now 
consider robust gate sizing under gate size variations (without budget of uncertainty), a design candidate is 
considered to be feasible in robust optimization only if all possible variations around it will be bounded by the 
deterministic feasible region. In this sense, some design candidates close to the boundary of deterministic 
feasible region will be identified as infeasible candidates as the uncertainty associated with them may exceed the 
deterministic. All points that are feasible in robust sense form a new region, which is defined as robust feasible 
region:  

( ){ }0 0 0 spec min 0 maxRFR : , .jX d X X T X X Xδ+ ≤ ≤ ≤                  (1.15) 

As shown in Figure 1(b), robust feasible region is a subset of deterministic feasible region, and is dependent 
on the variation range of gate size variations. 

We further incorporate the chance constraint with yield protection level η  (refer to (1.2)). In this case the 
robust feasible region becomes:  

( ){ }{ }0 0 0 specRFR : Prob .jX d X X Tδ η+ ≤ ≥                      (1.16) 

Here for better interpretation the gate size bounding constraints ( )min 0 maxX X X≤ ≤  is not shown.  
Obviously if we loosen the yield requirement, the robust feasible region will be changed accordingly. We will 
obtain a relatively larger robust feasible region for a smaller value of η , as some candidates identified as 
infeasible at higher protection level η  become feasible at lower level (as shown in Figure 2(a)). However, as 
claimed previously, the calculation of probabilistic constraint is intractable as it requires an explicit probabilistic 
distribution and intensive computation cost. One possible solution is to associate the yield requirement with the 
size of SOC uncertainty set and conduct uncertainty budget accordingly. To be specific, if a relatively lower 
yield level is required, it is reasonable that we accordingly choose a relatively smaller size of uncertainty set to 
model gate size variations, considering that the resulting timing violation can be tolerated to some extent. In this 
manner we avoid intensive computation of probabilistic constraint, and do not need to change the optimization 
framework. The robust feasible region with uncertainty budgeting is therefore defined as:  

( )( ){ }0 0 0 specRFR : , ,jX d X X Tη ≤                          (1.17) 

where ( )0 ,X η  is the SOC uncertainty set estimating the parameter variations, which is now dependent on 
not only the nominal values but also the yield requirement. If we are able to appropriately choose the size of the 
SOC set, the resulting robust feasible region in (1.17) could be a good approximation of the robust feasible 
region defined in (1.16). As shown in Figure 2(b), by changing the size of SOC set in accordance with yield 
level η , we are able to obtain a similar robust feasible region as in stochastic optimization and therefore close 
gate sizing results compared with stochastic optimization. Apparently the key question here is how to establish 
an efficient mapping relationship between yield protection level η  and the size of SOC uncertainty set. 

4.2. Yield-Guaranteed Uncertainty Set 
With consideration of budget of uncertainty, we rewrite the SOC set for parameter variations as follows:  
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Figure 2. Robust Feasible Region with and without Budget of Uncertainty. (a) Robust feasible region at yield 
protection level η; (b) Robust feasible region with budget of uncertainty.                                 

 

( ) ( ) ( )max2
)A X b s Xδ η η+ ≤ Ω                             (1.18) 

where ( )ηΩ  is a scaling factor of the SOC set size for a specific yield protection level. We assume parameter 
variations will be enclosed by this scaled SOC set. Note that the parameter variations defined here is dependent 
of η , as a result we use ( )Xδ η  to differentiate it from the physical parameter variations Xδ . For simplicity 
we let 0b =  in this model. Assume that the physical parameter variations obey a multivariate Gaussian distri- 
bution ( ),X N Pδ µ∼  where P  denotes the covariance matrix. We can derive that the uncertainty defined by  

the scaled SOC set, i.e. ( )Xδ η  also follows a scaled Gaussian distribution:  

( ) ( )2,X N Pδ η µ∼ Ω Ω                                (1.19) 

We now discuss how to approximate the scaling factor Ω  when applying the SOC uncertainty set to the 
timing constraint. Applying a first-order Taylor series expansion to the probabilistic delay function yields:  
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       (1.20) 

By substituting (1.19) into (1.20), it is possible to approximate the probabilistic constraint by a Gaussian CDF 
(Cumulative Distribution Function) and reveal the mapping relationship between η  and Ω . We start with  
analyzing the independent case. If the design parameters are all uncorrelated, since ( ) ( ),i i ix Nδ η µ σ∼ Ω Ω ,  
following probability theory we can derive that delay metric obeys the following Gaussian distribution:  
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      (1.21) 

Therefore the probabilistic constraint function can be approximated as:  

{ } spec spec
specProb Prob j j j
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j d d d
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d d d
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σ σ σ
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where ( )Φ ⋅  is the cumulative distribution function for a standard Gaussian variable. Therefore, for a required  

level of yield protection, we can refer to Gaussian distribution table to find 
spec1 j

j

d

d

T µ

σ
−
 −
 Φ
 
 

 and further  

calculate the scaling factor Ω . 
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For a specific yield level η , we use the method described above to conduct uncertainty budgeting and obtain 
the optimal gate sizes satisfying yield requirement η . Based on the gate sizing results we run Monte-Carlo 
simulation to determine the frequency of delay violations, i.e. the percentage that circuit delay exceeds the 
timing constraint specT , and compare the violation rate by uncertainty budgeting with the expected violation rate 
for specified η  value. The results demonstrate good accuracy of the approximation method used in budget of 
uncertainty. 

We focus on formulating the set of constraint functions ( )0jd X Xδ+ . For small parameter variations from  

their nominal values, the variational constraint function ( )0jd X Xδ+  can be approximated by a first-order  
Taylor series expansion:  

( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0
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i

n
j

j j j j i
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d
d X X d X d X X X X d X x

x
δ δ δ

=
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∑             (1.23) 

where ( )0jd X∇  represents the gradient of delay function jd  calculated at the nominal values of gate sizes, 
and Xδ  denotes the random variations around nominal gate sizes 

0i
x ’s. 

From (1.23) we observe that the variational function ( )0jd X Xδ+  consists of two components: 1) the  

deterministic part ( )0jd X , which is in signomial form; and 2) the variational part 
0
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∑ , consisting  

of a gradient term and a parameter variation term. On the other hand, all possible perturbation values in the 
parameter variation term are required to satisfy the timing constraint specT . In other words, the complete 
variational function (1.23) has to be smaller than this user-defined delay specification. This is equivalent to:  
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∑                        (1.24) 

which indicates that the maximum possible value of the variational function must be bounded by timing 
constraint specT . In what follows, the variational delay constraint is modeled as the deterministic constraint 
(1.24). 

After one step of transformation, the constraint function is still not in standard GP form, and further 
transformations are necessary for GP formulation. We show that by employing the SOC estimation model and 
introducing a set of slack variables, the variational constraint function can be eventually transformed into a set 
of standard posynomials. The formulation procedure is applicable to delay models in form of any signomial. 
Posynomial delay models can be certainly addressed in the same manner since a posynomial is a special case of 
a a signomial. 

We employ the SOC representation, which is described in Section 3, to address the parameter variation term 
Xδ . Given a gate size vector nX R∈  with nominal vector 0X , parameter variations around the nominal 

values are characterized by a SOC estimation model:  

( )max

1
2

2
1 1 1 1

n n n n

i i i i ij i j
i i i j i

S X

AX b c x d x e x x h
−

= = = = +

+ ≤ + + +∑ ∑ ∑∑


                      (1.25) 

where maxS  is an auxiliary parameter introduced to manipulate parameter perturbation range. The variations are 
considered to be bounded within the SOC region defined in (1.25), and the boundary condition maxS  deter- 
mines the size of the SOC region. Note that maxS  itself is dependent on the nominal value of design parameters. 
As shown in (1.25), maxs  is a conic function of the nominal gate sizes. In addition to the linear terms of design 
parameters, it also includes a set of quadratic terms for the purpose of capturing the nonlinearity of the SOC size, 
as well as a set of cross terms for the purpose of capturing the correlations among design parameters. We have 
applied both linear regression and nonlinear regression techniques to fit the form of maxs  function (refer to the 
section of experimental results). The fitting results show that the assumption of conic-form maxs  function 
yields much less fitting errors and achieves good approximation accuracy. 
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We will show that by employing the conic-form SOC estimation model and introducing a set of slack 
variables, the variational constraint function can be eventually transformed into a set of standard posynomials. 
The formulation procedure is applicable to delay models in form of any signomial. Posynomial delay models 
can be certainly addressed in the same manner since a posynomial is a special case of a signomial. The robust 
gate sizing problem is generalized as follows:  

( )

1

spec
1

minimize : Area

subject to : max

n

i i
i

n
j

j iX i i

x

d
d x x T

xδ

α

δ

=

∀ =

=

 ∂   + ≤  ∂   

∑

∑                           (1.26)
 

( )max2AX b S X+ ≤                                      (1.27) 

min maxX X X≤ ≤  

1 2 1 2variables : , , , ,X s s z z  

The objective is already a posynomial and satisfies standard GP requirement. There are two constraints which 
are not in standard GP form, a robust delay constraint and the conic-form SOC constraint for uncertainty 
estimation. As described above, the conic-form SOC constraint (1.27) can be translated into a general-form SOC 
interpretation, and therefore can be accurately approximated by a set of linear constraints [24]. Further GP 
formulation are required. We will focus on formulating the delay constraint (1.26). We rewrite the delay 
function as follows:  

( )
1 1

.lk
nK

a
j k l

k l
d X c x

= =

= ⋅∑ ∏                               (1.28) 

where kc  and ika  can be any real number. The derivative of delay function at ix  is then given by:  

1

1
.lk ik

K
j a a

ik k l i
k l ii

d
a c x x

x
−

= ≠

∂
= ⋅ ⋅

∂ ∑ ∏                            (1.29) 

By combining the results in (1.28) and (1.29) we can express the constraint function (1.24) explicitly:  

0 0 0

1
spec

1 1 11
maxlk lk ik

nK n K
a a a

k ik k il l lXk i kl l i
c x a c x x x T

δ
δ−

∀= = == ≠

  + ⋅ ≤  
  

∑ ∑ ∑∏ ∏                 (1.30) 

where 
0i

x ’s represent nominal gate sizes, and ixδ ’s the corresponding size variations. For conciseness we do 
the following substitution for (1.30):  

( )
0 0

1.lk ika a
ik ik k l i

l i
g X a c x x −

≠

= ∏  

In above equation, kc  stands for the multiplicative coefficient and ika  stands for the exponent index in 
posynomial delay function (1.28), therefore ( )ikg X  could be either positive or negative, bringing the difficulty 
in GP formulation since a standard posynomial does not allow negative coefficients. To address this problem, 
We further introduce two vectors , nR+ −Φ Φ ∈  to collect the positive and negative coefficients in (1.30) 
respectively. To be more specific, the components of vectors +Φ  and −Φ  are generalized as follows:  

( )

( )

1,

2,

for 0, 1,2, ,

for 0, 1,2, ,

i ip ip
p

i iq iq
q

g X a i n

g X a i n
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φ

= ∀ > =



= ∀ < =


∑

∑





                      (1.31) 

Having explained the definition of +Φ , −Φ  in (1.31), we further translate (1.30) into the following 
expression:  

( ) { }0 0 spec
1 1 1 11 1

max max , ,lk lk
n nK n K K

a a
k ik i kl lX Xk i k kl l

c x g X x c x X X T
δ δ

δ δ δ+ −∀ ∀= = = == =

  + ⋅ = + Φ + Φ ≤  
  

∑ ∑ ∑ ∑∏ ∏     (1.32) 
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where ,a b  denotes the innver product of two vectors a  and b . Following the well-known Cauchy-Sch- 
wartz inequality:  

2 2, ,a b a b≤ ⋅                                   (1.33) 

an equivalent expression for (1.33) is given by:  

0 spec2 2 2 2
1 1

.lk
nK

a
k l

k l
c x X X Tδ δ+ −

= =

+ Φ ⋅ + Φ ⋅ ≤∑ ∏                     (1.34) 

By employing the SOC estimation model and following norm properties, gate size variations can be estimated 
as:  

( )( )max2 2
2

1X S X b
A

δ ≤ −                             (1.35) 

Substituting (1.35) into (1.34) yields the following constraint:  

( ) ( )( )2 2
max spec2

2

.d X S X b T
A

+ −Φ + Φ
+ − ≤                      (1.36) 

One more step of formulation is to introduce two more slack variables 1r  and 2r  to substitute +Φ  and 
−Φ :  

2 T
1 12

2 T
2 22

r r

r r
+ + +

− − −

= Φ ⇔ = Φ Φ

= Φ ⇔ = Φ Φ
                              (1.37) 

Putting all the formulation results together, we conclude that the variational constraint function (1.24) has 
been replaced by an equivalent set of constraints:  

( )0

1 2
max spec2

1 1 2

lk
nK

a
k l

k l

r rc x S b T
A= =

+
+ − ≤∑ ∏                         (1.38) 

T 2
1 1 1 1r−Φ Φ ≤                                    (1.39) 
T 2
2 2 2 1r−Φ Φ ≤                                    (1.40) 

which is very close to a standard GP expression with the new decision variable set: ( )1 2, ,X r r . The quadratic 
terms in constraints (1.39) and (1.40) are already in standard posynomial form by expanding them:  

T T
1 1 1, 1, 2 2 2, 2,

, ,
, .i j i j

i j i j
φ φ φ φΦ Φ = Φ Φ =∑ ∑  

Above expansion indicates that the quadratic terms both are summations of posynomials with all positive 
multiplicative coefficients, therefore the constraints (1.39) and (1.40) are also posynominals and they satisfy the 
requirements of GP formulation. 

The last step is to transform the signomial constraints into posynomial constraints. [25] introduces an efficient 
way of such conversion. After such transformation, the final formulated GP can be efficiently solved by existing 
GP tools. In real application, this formulation procedure is repeated for all delay constraints, and the final 
formulated GP problem can be solved by convex optimization tools. It is worth emphasizing that if we take 
uncertainty budgeting into account, the formation of maxs  will be dependent on not only the conic-form fitting 
function, but also the yield-determined size of the SOC uncertainty set.  

5. Experimental Results 
In this section we present the robust gate sizing results on ISCAS benchmark circuit. All simulations and 
experiments were performed on a quad-core 2.8-GHz machine with 4-GB memory. In simulation part, we use 
the 65nm technology node provided by PTM model [26]. The coefficients in gate delay functions are extracted 
from HSPICE simulation data. We assume 20% process variations for all gate sizes around their nominal values. 
An convex optimization software GPPLAB [27] was used to solve the final GP problem. The optimization  
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Figure 3. Area costs for C432 circuit with different delay 
specifications UE means Uncertainty Ellipsoidal USOC refers 
to the new method.                                      

 
objective is to minimize the total area i ii xα∑ , where iα  denotes the number of transistors in gate i , and gate  
size ix  stands for the ratio of area of gate i  to that of a minimum sized inverter. Figure 3 demonstrates this 
experimental result. We compared delay specification and area consumption of uncertainty ellipsoidal (UE) and 
our proposed method USOC. It can be noticed that with the same delay specification, we have 20% of reduction 
in area consumption.  

6. Conclusion 
This paper presents a novel uncertainty estimation model for robust gate sizing under process variations. The 
new model employs the concept of SOC to accurately characterize local variations around nominal gate sizes. 
With gate size variations characterized in SOC estimation, the robust gate sizing problem can be formulated into 
a standard geometric program, and therefore can be efficiently solved by existing GP solvers.  
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