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Abstract 
The present work investigated the efficiency of leaf reflectance indices in 
the identification of Capsicum annuum L. var. annuum resistant to anth-
racnose in the fruit. Twenty-five F5:6 families originating from contrasting 
parents were assessed; the parents were accession UENF 2285 (susceptible 
to anthracnose) and accession UENF 1381, a hot pepper resistant to anth-
racnose in the fruit. The experiment was carried out in an experimental 
field in Campos dos Goytacazes, Rio de Janeiro, Brazil, between May and 
October of 2021. The treatments were arranged in a randomized block de-
sign, with three replications and five plants per plot. Fifteen LRIs were es-
timated using a CI-710 portable mini leaf spectrometer. The assessments 
covered all plant growth after flowering, and a total of six assessments were 
performed at 15-days intervals, beginning at 35 and ending 120 days after 
flowering (DAFs). Analysis of variance in a split-plot scheme was per-
formed, as were tests of mean groupings and principal components analysis 
(PCA). The best period for evaluating leaf reflectance indices in C. annuum 
var. annuum is 120 days after flowering. The leaf reflectance indices PRI, 
CNDVI and Ctr2 stood out as effective in distinguishing between resistant 
and susceptible genotypes. 
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1. Introduction 

Climate change, the rise of pathogens and pests, shortages of natural resources, 
and population growth represent core challenges faced by plant breeders in the 
21st century [1]. However, advances in breeding strategies, allied with the use of 
non-destructive and highly efficient tools, have significantly accelerated the 
search for more sustainable agriculture able to maintain agricultural yield and 
promote the food security needed for future generations [2] [3]. 

High-throughput phenotyping is a tool aimed at quickly and extensively cha-
racterizing and measuring traits, which can include the measurement of specific 
characteristics in plants, animals, microorganisms, or even humans, depending 
on the field of study. This makes it possible to evaluate many individuals for 
many traits, in a non-destructive manner, and always striving for high accuracy 
and precision. It can be used throughout the crop cycle [4]. The criteria for 
choosing the best approach should take into consideration the characteristic be-
ing evaluated and the timing of the assessment. The most successful traits for 
evaluation integrate, throughout the crop cycle, both in time and space, the per-
formance of the crop in terms of resource capture (e.g., radiation, water, and 
nutrients) and how these resources are efficiently utilized [5]. 

Over the past 50 years, a variety of vegetation indices have been proposed and 
studied for various applications, ranging from identification, quantification to 
discrimination of water stress, diseases, pests, and nutritional status. Many of 
these indices are specifically relevant in detecting diseases in plants, as physio-
logical stress manifests through changes in the balance of pigment composition, 
such as carotenoids, chlorophylls, and xanthophylls [6]. 

Early detection of stress in plants remains a challenge, but various techniques, 
such as chlorophyll fluorescence, visible and infrared spectroscopy, and hyper-
spectral imaging, have been tested. Recent advances in chlorophyll fluorescence 
retrieval and the use of improved algorithms enable the rapid measurement of 
these subtle stress parameters [5].  

The efficient use of spectral reflectance measurements for disease detection 
relies on identifying the most significant spectral wavelengths highly correlated 
with a specific disease. Depending on the application area and objective, only 
certain regions of the spectrum are of interest. In the visible region (400 to 700 
nm), pigment composition has a predominant impact on the spectral signature 
[7] [8]. On the other hand, the near infrared (700 to 1100 nm) is mainly influ-
enced by leaf structural characteristics and water content [9]. 

The application of sensors and Leaf Reflectance Indices (LRIs) analyses has 
allowed breeders to obtain accurate information regarding plant characteristics 
such as chlorophyll and nutrient levels and responses to abiotic and biotic stress 
[10] [11]. This data has been crucial for selecting genotypes with enhanced re-
sistance to leaf diseases and sources of environmental stress, as well as agricul-
tural performance, thus aiding in the development of more yield and sustainable 
cultivars [12] [13]. 
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The development of a bell pepper cultivar resistant to anthracnose caused by 
Colletotrichum scovillei requires a considerable investment of time, resources, 
and labor, being even more challenging due to the destructive and laborious na-
ture of the evaluation method. To date, is no registered bell pepper cultivar that 
is resistant and available for agricultural use. The main obstacles to obtaining a 
resistant cultivar include the complexity of resistant genetic inheritance, the in-
teraction between the plant and pathogen, and the development stage of the fruit 
[14]. The inheritance of resistance of the genotype UENF 1381 to C. scovillei is 
quantitative, manifesting itself independently in the different ripening stages of 
the fruit. This resistance is governed by two, possibly different, principal genes 
with an associated polygenic effect [15]. 

Due to the complexity of the inheritance of resistance to C. scovillei, new me-
thods for analyzing plant-pathogen interaction are necessary to assist breeders in 
identifying and selecting resistant genotypes more quickly and accurately. In this 
context, leaf reflectance indices (LRIs) can be used for the indirect selection of traits. 

Prominent among the different groups of indices of leaf reflectance are the 
NPCI (Normalized Pigmented Chlorophyll Index) and the Ctr2 (Carter 2 In-
dex), which are directly related to the proportion of total photosynthetic pig-
ments in relation to chlorophyll (chl). These indices have been used to estimate 
the status of nitrogen (N) of plants, an essential nutrient that plays a role in both 
growth and resistance to diseases [16] [17]. Nitrogen plays a fundamental role in 
the production of pathogenesis-related (PR) proteins involved in defense res-
ponses against pathogens [18]. 

The aim of this work was to investigate the efficiency of leaf reflectance indices 
in identifying lines of C. annuum var. annuum resistant to anthracnose in fruits. 

2. Materials and Methods 
2.1. Location, Vegetable Material, and Cultivation 

This experiment was carried out in an experimental field at the Universidade Es-
tadual do Norte Fluminense Darcy Ribeiro, located in the municipality of Campos 
dos Goytacazes, in northern Rio de Janeiro State, Brazil, at 21˚19'23" southern la-
titude, 41˚19'40" western longitude, and an average altitude of 14 m. Twenty-five 
F5:6 families derived from crosses of contrasting parents were evaluated. The femi-
nine parent was accession UENF 2285 of the C. annuum var. annuum species 
(susceptible to anthracnose), while the male parent was accession UENF 1381 
(GBUEL104), a pungent pepper of the species C. annuum var. annuum that is re-
sistant to anthracnose in fruits of both stages of maturity [19]. These two parents 
were used as standards for susceptibility and resistance, respectively (Figure 1). 

The plants were cultivated from May to October of 2021, a period considered 
within the annual dry season based on the prevailing water regime. The average 
minimum temperature registered for 2021 was 18°C, and the average maximum 
was 27°C [20]. With respect to cultivation practices, they were carried out ac-
cording to the necessities of the crop. A drip irrigation system was employed by  
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Figure 1. Development and selection of Capsicum annuum L. var. annuum resistant to 
anthracnose through the pedigree method [22] [23] [24] [25]. 

 
means of a Katif dripper for each plant. Irrigation was performed according to 
water requirements [21]. 

2.2. Experimental Design 

The treatments were arranged in a randomized block design with three repeti-
tions and five plants per plot and distributed in double rows with 1.0 m spacing 
between rows and 0.5 m between plants. 

2.3. Assessment of Leaf Reflectance Indices (LRIs)  

The LRIs were estimated using a CI-710 handheld portable leaf spectrometer 
(CID-BioScience, Inc., Camas, Washington, USA). The device was configured 
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and calibrated with a signal integration time of 300 ms, Integration Time factor 
at the highest value, and signal-to-noise ratio of scan average 2 and a boxcar 
width value of 10 [26]. Two plants per plot were sampled by using the reading 
carried out in the middle portion of the abaxial side of the leaf. 

The assessments covered the plant’s growth cycle after flowering. Six assess-
ments were performed with intervals of approximately 15 days, beginning at 35 
days and ending 120 days after flowering (DAF) (Figure 2). 

While the portable leaf spectrometer produced 17 reflectance indices covering 
different wavelengths, 15 indices were evaluated in this study (Table 1).RENDVI 
and CNDVI were identical, that is, highly collinear, and as CNDVI is widely 
used, it was decided to discard RENDVI. PRSI is used more to detect leaf senes-
cence, which is not the case in question. Both indices did not show significant 
differences regarding treatments. After each reading the data was organized on 
an Excel spreadsheet for statistical analysis. 

 

 
Figure 2. Evaluation of leaf reflectance indices in Capsicum annuum L. var. annuum. 
DAF: days after flowering. 

 
Table 1. Classification of Leaf Reflectance Indices and their respective equations and wavelengths, used in the study of the Capsi-
cum-Colletotrichum interaction. 

Group LFIs Equation Wavelength Reference 

Vegetation 
Indices 

Normalized Difference Vegetation 
Index (NDVI) 

( )
( )

800 680

800 680

R R
R R

−
+

 Red, NIR [27] 

Transformed Chlorophyll Absorp-
tion Ratio Index (TCARI) 

( ) ( )700 670 700 550
7003 0.2.
670

RR R R R
R

 − − −  
 

 Green, Red, NIR [28] 

Cumulative Normalized Difference 
Vegetation Index (CNDVI) 

( )
( )

750 705

750 705

R R
R R

−
+

 Red, NIR [29] 

Green Index (G) 554

677

R
R

 
 
 

 Green, Red [29] 

Light use  
Efficiency 

Photochemical Reflectance Index 
(PRI) 

( )
( )

531 570

531 570

R R
R R

−
+

 Blue, Green [30] 
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Continued  

Chlorophyll 
Indices 

Anthocyanin Reflectance Index 1 
(ARI1) 550 700

1 1
R R

 
− 

 
 Blue, Red [31] 

Anthocyanin Reflectance Index 2 
(ARI2) 800

550 700

1 1R
R R

 
⋅ − 
 

 Blue, Red, NIR [31] 

Carotenoid Reflectance Index 1 
(CRI1) 510 550

1 1
R R

 
− 

 
 Blue, Green [32] 

Carotenoid Reflectance Index 2 
(CRI2) 510 700

1 1
R R

 
− 

 
 Blue, Red [32] 

Water Index Water Band Index (WBI) 900

970

R
R

 
 
 

 Blue, NIR [33] 

Carotenoid 
Indices 

Structural Independent Pigment 
Index (SIPI) 

( )
( )

800 445

800 680

R R
R R

−
−

 Blue, Red, NIR [34] 

Carter Index 1 (Ctr1) 695

420

R
R

 
 
 

 Blue, Red [35] 

Carter Index 2 (Ctr2) 695

760

R
R

 
 
 

 Blue, Red, NIR [35] 

Flavonoid Reflectance Index (FRI) 800
410 460

1 1R
R R

 
⋅ − 
 

 Blue, NIR [36] 

Normalized Chlorophyll Index 
(NPCI) 

( )
( )

680 430

680 430

R R
R R

−
+

 Blue, Red [36] 

3. Statistical Analyses 
3.1. Univariate Analysis 

All variables were submitted to a Bartlett homogeneity and Lilliefors normality 
test to verify compliance with the assumptions of the analysis of variance 
(ANOVA). The LRIs were analyzed in a split-plot design with the 27 genotypes 
as the main factor (Factor A) and the six evaluation days (Factor B) as a second-
ary factor, following the model: 

Yijkl= μ + Blk + Ai + emaki + Bj + ABij+ ξijk, 

Where: 
μ = effect of the general average. 
Blk = effect of the block (k), I = 1, 2, ..., r. 
Ai= effect of the genotype factor (A). 
Bj = effect of the time factor (B). 
ABij = effect of the interaction of the i-th level of A with the j-th level of B. 
ξijk = random error.  
In the model described the blocks - NID (0, σ2b)] and the errors are consid-

ered random effects [ξijk - NID (0, σ2)], while the genotypes[Gi - NID (0, σ2g)], 
days, and the genotype x day interaction are considered fixed effects. After ana-
lyzing the significance of the variables, the genotype averages were grouped by 
the Scott-Knott Test (1974) (p ≤ 0.05). The analyses were carried out by the pro-
gram Genes [37] and the graphic was created using the biplot package of the 
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4.1.1. version of the program R [38]. 

3.2. Principal Component Analysis - PCA 

Principal component analysis (PCA) was performed using the matrix of geno-
type correlation obtained from the 27 genotypes assessed over six distinct pe-
riods among the 15 LRIs. 

With this method one set of n variables correlated in an x vector is transformed 
into a new p set of uncorrelated variables, reducing the dimension of p to q. Each 
new variable is a linear combination of the original variables, a1x, a2x,..., aqx, 
called principal components that are able to explain the majority of the total va-
riance of the original data. The total variation of the new variables is equal to the 
total variation of the original variables and the variance of each new variable de-
creases in order. In other words, of all the possible linear combinations, q1 has the 
greatest variance, and of all the possible linear combinations uncorrelated with q1, 
that with the greatest variance is q2, and so on [39]. The graph was elaborated us-
ing the package ggplot2 of the program R, version 4.1.1. [40]. 

4. Results 
4.1. Genetic Variability of LRIs 

There were statistically significant differences for all of the factors analyzed (p ≤ 
0.01), indicating variability among the genotypes, variation in the leaf reflectance 
indices (LRIs) through time, and interaction between the genotype and days af-
ter flowering (DAF). With respect to the genotype factor, six indices presented 
significant differences: Ctr2, PRI, NDVI, CNDVI, NPCI, and TCARI. For the 
DAF factor, only the index Ctr1 failed to show significant changes during the 
growth cycle. Finally, in the interaction between the genotype and DAF, only the 
indices NPCI and TCARI were statistically significant, indicating the genotypes 
responded in distinct manners during the growth cycle (Table 2). These results 
indicate that leaf reflectance indices were sensitive enough to distinguish be-
tween different genotypes, as well as changes over the evaluation days. 

The experimental variation coefficients (CV%) for the genotype (Factor A) 
and DAF (Factor B) varied from low to high, exhibiting similar values. In the 
same way, the coefficients of genotype determination varied from low to high 
depending on the index analyzed. The six indices that obtained significant dif-
ferences for the genotype factor had high values for the coefficient of genotype 
determination (Vg) (Table 2). 

Three LRIs were able to distinguish the resistant parent from the susceptible 
parent (PRI, CNDVI, and Ctr2), resulting in the formation of two distinct 
groups (Figure 3). Regarding the PRI and CNDVI indices (Figure 3A and 3B), 
most of the lines and the susceptible parent obtained higher means, while the re-
sistant parent (UENF 1381) showed lower means. However, for the Ctr2 index 
(Figure 3C), higher means were observed in the parent UENF 1381, establishing 
a different pattern compared to the other two indices. 
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Table 2. Summary of ANOVA, covering mean, experimental coefficient of variation, and genotypic determination coefficient 
related to the 15 leaf reflectance indices (LRIs) evaluated in 25 families of Capsicum annuum L. var. annuum and their parents. 

  Mean Squared     

Indices 
Block 

(DF = 2) 
Genotype (A) 

(DF = 26) 
Residual a 
(DF = 52) 

DAF (B) 
(DF = 5) 

AB 
(DF = 130) 

Residual b 
(DF = 270) 

Mean CV (%) A CV (%) B Vg 

ARI1 0.000004 0.000001ns 0.000001 0.000017** 0.000001ns 0.000001 0.002 46.59 46.56 26.23 
ARI2 0.009757 0.005717ns 0.00366 0.070815** 0.003104ns 0.003567 0.142 42.53 41.99 35.98 
CRI1 0.000144 0.000052ns 0.000043 0.000232** 0.000033ns 0.000031 0.028 23.22 19.63 16.91 
CRI2 0.000187 0.000059ns 0.000053 0.00013** 0.000041ns 0.000039 0.030 23.80 20.29 10.51 
Ctr1 0.083987 0.240501ns 0.15807 0.181829ns 0.104036ns 0.081631 2.685 14.80 10.63 34.27 
Ctr2 0.000661 0.003546** 0.000852 0.009312** 0.000808ns 0.000786 0.342 8.51 8.17 75.96 
FRI 6.050208 1.277193ns 1.326554 4.919119** 0.723834ns 0.000621 2.195 52.46 34.63 0.00 
PRI 0.000021 0.0001** 0.000039 0.004041** 0.00004ns 0.000043 0.031 19.87 20.92 61.03 
G 0.176495 0.065511ns 0.052071 0.253536** 0.027087ns 0.028351 2.401 9.50 7.01 20.51 

NDVI 0.003212 0.001786** 0.000966 0.009217** 0.000621ns 0.000667 0.702 4.42 3.67 45.91 
CNDVI 0.000259 0.003284** 0.00081 0.008339** 0.000637ns 0.000621 0.308 9.21 0.06 75.33 
NPCI 0.00465 0.003211** 0.001579 0.010625** 0.00155** 0.00093 0.140 28.23 21.66 50.83 

TCARI 63.50483 62.46071** 20.151114 114.422** 27.71579** 21.251408 47.764 9.39 9.65 67.73 
WBI 0.055475 0.003077ns 0.004042 0.02277** 0.001045ns 0.00117 1.031 6.16 3.31 0.00 
SIPI 0.00112 0.001215ns 0.000881 0.003897** 0.000548ns 0.000618 0.730 4.05 3.40 27.49 

ns not significant and ** significant at p ≤ 0.01 based on the F-test probability. DF = degrees of freedom; CV (%) A = experimental 
coefficient of variation of the plot; CV (%) B = experimental coefficient of variation of the subplot; Vg = genotypic determination 
coefficient. 

 

 
Figure 3. Scatter plot of means. A) PRI: photochemical reflectance index; B) CNDVI: 
cumulative normalized difference vegetation index, and C) Ctr2: Carter 2 index of 25 
lines of Capsicum annuum L. var. annuum and their respective parents. 
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Figure 4. Genotypic determination coefficient (Vg) of the LRIs for data collected between 35 and 120 days after flowering in Cap-
sicum annuum L. var. annuum. 

 
From the individual analysis of the Leaf Reflectance Indices, low values were 

observed for the genotypic determination coefficient in the first two evaluations 
(35 and 50 days after flowering - DAF) and at 80 DAF. The highest Vg values 
were recorded at 120 DAF, indicating that the greatest genetic variability is bet-
ter explained in the final stages of plant development. This suggests that the LRIs 
can be effectively studied in just a single evaluation (Figure 4). 

4.2. Principal Component Analysis 

Principal component analysis (PCA) was performed using data from all leaf ref-
lectance indices of the genotypes and days after flowering evaluated. The first 
and second components explained 69.81% and 19.44% of the total variability, 
respectively, or 89.25% of the total variation (Figure 5). 

On the PC1 axis, eight LRIs (NPCI, CTR1, FRI, CRI1, CRI2, TCARI, CTR2, 
and WBI) were grouped forming angles smaller than 90 degrees, indicating posi-
tive correlation among them and negative correlation with the other indices. The 
same interpretation applies to the PC2 axis. 

It was observed that the susceptible parent UENF 2285, the only susceptible 
genotype, was isolated from the other genotypes by the clustering of the indices 
G, SIPI, PRI, CNDVI, and NDVI. A second group was formed by the resistant 
parent UENF 1381 and 13 more lines close to the center of the component axis. 
The third group, with 12 lines, was further away from the resistant parent, and  
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Figure 5. Biplot graph of principal component analysis (PCA) using 15 leaf reflectance 
indices (LRIs) obtained from six evaluations of 25 lines of Capsicum annuum L. var. an-
nuum, along with their resistant parent (UENF 1381) and susceptible parent (UENF 
2285). 

 
the LRIs that contributed most to this divergence were TCARI, Ctr2, and WBI. 
The order of importance of the traits showed that the LRIs with the greatest 
contribution to the differentiation of genotypes were: NDVI, FRI, Ctr1, SIPI, 
PRI, Ctr2, CNDVI, WBI, NPCI, and ARI2 (Figure 5). 

5. Discussion 
5.1. Genetic Variability of LRIs 

One of the most important estimates in plant breeding programs is that of the 
genotypic determination coefficient or heritability (h2). This component results 
from the interaction of genetic and environmental effects and their interaction. 
However, it is important to emphasize that various factors can affect its estimate, 
such as the very feature under investigation, the estimation method utilized, the 
sample size being assessed, the number and type of environment, the experi-
mental unit considered, and the accuracy with which the experiment is con-
ducted [4]. 

The h² represents the reliability of the phenotypic value as an indication of the 
genetic value of a trait. The greater the heritability, the greater the expected ge-
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netic progress. This allows breeders to perform selection based on phenotypic 
values, maximizing genetic gains. In addition, h² helps in choosing the most 
suitable breeding method to be used. This information is valuable for guiding 
efforts aimed at the genetic improvement of plants [41]. 

In the individual analysis, higher Vg values for the 15 LRIs were obtained at 
the fruiting stage of the plant (120 DAF). We observed a trend of increasing Vg 
values throughout the growth cycle. This observation highlights the importance 
of time as a significant factor in the expression of genetic variability associated 
with LRIs. Genetic variation seems to manifest more prominently in later stages 
of the plant’s life cycle, specifically at 120 DAF. This pattern may have important 
implications for selection strategies, suggesting that a single evaluation at a later 
stage of development can provide representative insights into genetic variability 
related to LRIs. 

Based on the results of the analysis of variance, six indices of leaf reflectance 
were identified that had the potential to detect significant differences between 
genotypes. However, using the Scott-Knott mean clustering test, only four of 
these indices were able to clearly distinguish the resistant parent (UENF 1381) 
from the susceptible parent (UENF 2285). 

The leaf reflectance indices PRI, CNDVI, and Ctr2 were able to discriminate 
between the resistant and susceptible parent. In addition to distinguishing the 
parents, these three indices enabled the clustering of the lines L11, L13, L14, and 
L16 along with the resistant parent. These results suggest that these LRIs have 
the potential to be used as tools for selecting genotypes more resistant to anth-
racnose, but further studies are needed for confirmation. Furthermore, it is 
worth noting that all these three indices showed high values of the genotypic de-
termination coefficient (Vg), indicating that they can be considered reliable in-
dicators in the characterization and selection of the studied genotypes. 

5.2. Principal Component Analysis - PCA 

Through PCA, it was possible to identify the indices that had the greatest con-
tribution to distinguish the resistant lines from the susceptible parent (UENF 
2285). This parent was isolated from all other genotypes by the clustering of the 
LRIs G, SIPI, PRI, NDVI, and CNDVI. Of these, PRI and CNDVI were also re-
levant for distinguishing the parents by the Scott-Knott mean clustering test, 
with higher means observed for the susceptible parent UENF 2285. 

PRI (Photochemical Reflectance Index) is directly related to the efficiency of 
light use in the plant’s xanthophyll cycle and can be used to monitor different 
aspects of the plant’s physiological response to biotic and abiotic stresses [42]. 
This index can range from −1 to 1, with higher values indicating greater effi-
ciency of photosystem II [43]. On the other hand, CNDVI (Cumulative Norma-
lized Difference Vegetation Index) is associated with the photosynthetic activity 
of vegetation and can vary from −1 to 1 depending on environmental factors 
such as temperature and humidity. This index is extremely sensitive to climatic 
changes [44]. 
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The indices NPCI, Ctr1, FRI, CRI1, and CRI2 grouped the resistant parent 
UENF 1381 and 13 more lines close to the center of the component axes, indi-
cating that part of the variation observed in the genotypes resides in a few LRIs 
or a combination of these. The lines evaluated have homozygosity rates above 
90% for many traits, so PCA analysis detected low variation among the LRIs. 
The susceptible parent UENF 2285 was isolated due to genetic divergence be-
tween the resistant parent and the lines. Therefore, the breeder may choose to 
discard traits (LRIs) with little variation, as their study does not significantly 
contribute to the differentiation of genotypes. 

The study of LRIs for the identification of genotypes resistant to biotic and 
abiotic stress is based on the wavelength of leaf reflectance [45]. The indices 
Ctr1, Ctr2, and NPCI are directly related to the proportion of total photosyn-
thetic pigments relative to chlorophyll and are part of the carotenoid indices 
group. These are used to estimate plant nitrogen (N) status, as under limited N 
conditions, chlorophyll loss occurs, resulting in changes in leaf reflectance spec-
trum [36]. Nitrogen plays an important role in plant growth and is essential for 
disease resistance [17]. It is worth highlighting that among the defense genes ac-
tivated in non-host resistance (NHR) and hypersensitivity response (HR), there 
are some associated with the production of pathogenesis-related proteins (PRs), 
including nitrogen-containing compound biosynthesis pathways [18]. There-
fore, these indices can be used to select C. annuum genotypes with a higher ca-
pacity to absorb and utilize nitrogen efficiently, resulting in more vigorous 
plants with greater disease resistance. 

On the other hand, TCARI (Transformed Chlorophyll Absorption Ratio In-
dex) is a highly sensitive index to chlorophyll variation and very efficient in its 
estimation, as it does not capture the reflectance of non-photosynthetic mate-
rials. Studies in the bean crop demonstrate that TCARI is a good index for esti-
mating leaf diseases, as it minimizes the effects of background or soil reflectance 
in aerial images [46]. Regarding the nutritional aspects of the plant, especially 
regarding nitrogen, TCARI has better accuracy compared to other indices, 
mainly due to the use of red edge to increase chlorophyll estimation. This is be-
cause the increase in near-infrared reflection is due to the increase in nitrogen 
concentration in the leaves [47]. 

The flavonoid reflectance index (FRI) is related to the content of chlorophyll, 
carotenoid, and flavonoid. Flavonoids are part of the secondary metabolism of 
plants and can perform various functions, including those related to plant de-
fense [48]. As a defense compound, they can be divided into two groups: 
pre-formed and induced compounds [49]. The involvement of pre-formed fla-
vonoids plays an important role in the host-pathogen interaction. These com-
pounds are stored in strategically important locations, where they can play a di-
rect signaling role in defense. Induced compounds are synthesized by the plant 
in response to physical injuries, infection, or stress [50]. They can also be con-
stitutively synthesized, but their biosynthesis is enhanced under the effect of 
various types of stress or can occur as phytoalexins only after infection or vari-
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ous types of stress [49]. 

6. Conclusion and Recommendations 

Regarding the phenological stage of C. annuum var. annuum genotypes, the eval-
uation of reflectance indices at 120 days was more reliable, as heritability was 
higher during this period. The leaf reflectance indices PRI, CNDVI, and Ctr2 
stood out as effective in distinguishing between resistant and susceptible geno-
types. On the other hand, ARI1 and Ctr1 indices may be excluded due to high 
correlation with other indices. The indices with the greatest contribution to the 
differentiation of resistant and susceptible genotypes were NDVI, FRI, SIPI, and 
PRI. 

The next steps of this research involve exploring the application of predictive 
models, such as machine learning models, to predict anthracnose resistance in C. 
annuum var. annuum based on leaf reflectance indices. Furthermore, additional 
studies are needed to validate the effectiveness of these indices under different 
environmental conditions, including variations in soil, climate, and agricultural 
practices. 

It is essential to deepen our understanding of leaf reflectance indices (PRI, 
CNDVI, Ctr2, NDVI, FRI, SIPI) to better elucidate the underlying mechanisms 
of anthracnose resistance and its relationship with phenotypic traits. Investigat-
ing other leaf reflectance indices may also provide additional or complementary 
insights to those already identified, thus expanding our knowledge of the rela-
tionship between leaf reflectance indices and disease resistance in C. annuum. 
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