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Abstract 

This paper presents vehicle localization and tracking methodology to utilize 
two-channel LiDAR data for turning movement counts. The proposed me-
thodology uniquely integrates a K-means clustering technique, an inverse 
sensor model, and a Kalman filter to obtain the final trajectories of an indi-
vidual vehicle. The objective of applying K-means clustering is to robustly 
differentiate LiDAR data generated by pedestrians and multiple vehicles to 
identify their presence in the LiDAR’s field of view (FOV). To localize the 
detected vehicle, an inverse sensor model was used to calculate the accurate 
location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A 
constant velocity model based Kalman filter is defined to utilize the localized 
vehicle information to construct its trajectory by combining LiDAR data from 
the consecutive scanning cycles. To test the accuracy of the proposed metho-
dology, the turning movement data was collected from busy intersections lo-
cated in Newark, NJ. The results show that the proposed method can effec-
tively develop the trajectories of the turning vehicles at the intersections and 
has an average accuracy of 83.8%. Obtained R-squared value for localizing the 
vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed 
method, it is compared with previously developed methods that focused on 
the application of multiple-channel LiDARs. The comparison shows that the 
proposed methodology utilizes two-channel LiDAR data effectively which has 
a low resolution of data cluster and can achieve acceptable accuracy compared 
to multiple-channel LiDARs and therefore can be used as a cost-effective 
measure for large-scale data collection of smart cities.  
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1. Introduction 

By 2025, nearly 70% of the world population may settle down in urban areas [1] 
[2]. The latest U.S. Census Bureau data showed that most of the U.S. largest ci-
ties experienced population growth between 2015 and 2016 [3]. The population 
expansion puts immense stress on the cities since it demands sophisticated 
transportation facilities, a healthy economy, a stable water/power supply system, 
and a quality environment. “Smart City” is one of the feasible options for city 
planning commissions to fulfill growing requirements. Over the last decade, 
many regional planning authorities have intensified their efforts to achieve the 
“Smart City” title. The smart city includes data collection from multiple means 
to monitor and manage traffic and transportation systems, power plants, water 
supply networks, and waste management. According to the experts, over the 
next 20 years of the period, cities worldwide will invest approximately $41 tril-
lion to upgrade their infrastructure [4] [5] [6]. 

The application of sensors and data visualization is one of the fundamental 
exercises carried out by regional planning authorities to collect diversified traffic 
data. In achieving Smart City/Smart Transportation aspects, it is essential to ob-
tain real-time information through deployed sensors and analyze it through 
open data portals that allow controlling cities’ various operations proactively [7]. 
Commonly, smart cities use the Internet of Things (IoT) devices such as con-
nected sensors, which can collect real-time data related to lights, atmosphere, air 
quality, traffic, and analyze it. As per the recent published report, IoT market is 
expected to reach about USD 1742.8 billion by 2030 [8]. The current technology 
to collect traffic data consists of Remote Traffic Microwave Sensors (RTMS), 
Video Analytics, loop detectors, and pneumatic tube counters. Even though 
these technologies have been used widely, it would be expensive and challenging 
to deploy on a large scale and have granular traffic data at low cost. Thus, the 
proposed methodology focuses on developing a data collection of the turning 
movement counts at intersections and equipping the roadway networks with a 
low-cost effective way of collecting the data. 

Currently, LiDAR technology has a fair amount of share in various industries 
such as agricultural, robot etc. [9] [10]. The high demand of LiDAR pushes 
manufacturers to introduce cost effective LiDARs with a low number of chan-
nels. A channel is defined as a pair of emitters and receivers, the higher the 
channel number is the more granular data LiDAR sensor can generate. However, 
low resolution data is a major obstacle in taking advantage of the cost-effective 
LiDAR sensors. It is observed that in previous research efforts, LiDAR applica-
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tions for object tracking or traffic data collection are conducted under a con-
trolled environment using expensive multiple channel LiDAR sensors. In this 
research a unique framework is developed by integrating a K-means clustering 
method to identify vehicle’s presence, an inverse sensor model to localize a ve-
hicle, and a Kalman filter to generate vehicle’s trajectory using two channel Li-
DAR. The generated vehicle trajectories are then used to conduct turning move-
ment counts. 

To date, limited studies are focused on dealing with the low-resolution LiDAR 
sensors to conduct traffic data collection and the presented study proposed a 
framework to handle the low-resolution LiDAR data to create vehicle trajectories 
for turning movement counts. The primary objective of the research is to take 
advantage of low-cost LiDAR sensors that can be used for large scale data collec-
tion practices to achieve smart city concept. The remainder of the paper is orga-
nized as follows: The literature review section briefly explains the earlier re-
search effort to use LiDAR technology for object tracking. The methodology sec-
tion describes the approach’s critical components, and development of frame-
work in depth. The conducted data collection activity is described in the 
proof-of-concept test, and its results are discussed in the following sections.  

2. Literature Review 

Grejner-Brzezinska et al. [11] examined the feasibility of airborne LiDAR to col-
lect traffic flow data. The study objectives were to develop a technique to identify 
and extract vehicles from LiDAR data. The algorithm extracts the vehicle infor-
mation from LiDAR data by removing road surface data. The LiDAR data was 
collected along with a GPS/Inertial Navigation System (INS) sensor. Estimated 
results show that the large vehicles’ velocities are estimated accurately compared 
to small vehicles. 

Zhao et al. [12], in 2006 studied the primary application of a LiDAR sensor at 
an intersection for tracking and classification of an object. Their proposed me-
thodology was to classify the object into three categories: 1) pedestrian, 2) bi-
cycle, and 3) cars, buses, trucks. The object classification was done by Markov 
states in which an object model is predefined based on their typical appearances. 
The tracking of an object was done by matching frame to frame data generated 
at each scanning cycle of the LiDAR. The data was collected at an intersection 
using SICK LMS291 LiDAR with a video camera to compare the results. The re-
sults show that the developed methodology can attain 95% accuracy after com-
paring it with ground truth data. However, only ten minutes of collected data is 
processed for this study. 

Wenqing [13] presented an algorithm to accurately track a vehicle using a 
LiDAR sensor through an intersection. The primary objective of the study was to 
collect stop distance measurement of the vehicles at the intersection. A four-step 
algorithm was introduced, which first identifies the object, extracts the feature 
points of the detected object, tracks an object, and later calculates the stopping 
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distance. The data was collected by installing a LiDAR sensor at the corner of the 
intersection. Object extraction with the threshold value was applied to identify 
the object from the background of the LiDAR data. The feature points were ex-
tracted to represent an entire cluster with a single position by fitting the vehicle’s 
front and side profiles with lines and finding the intersection of these two lines. 
Small gaps between the clusters of the feature points over time were analyzed to 
track the vehicles. The results show that the algorithm is effective in extracting 
vehicle objects, using a static background and a static threshold.  

Fod et al. [14] proposed a method to track people in crowded areas using sin-
gle or multiple laser range finder data. A Kalman filter-based trajectory was 
proposed in this research. The proposed method was performed under different 
scenarios with the SICK planner scanning laser finder. The results illustrate that 
the proposed method can track multiple people with low errors and with rea-
sonable computational efficiency. 

Zhao and Shibasajki [15] studied the application of LiDAR in indoor areas 
such as malls and exhibition halls to detect and track pedestrians using a single 
LiDAR scanner. The data were collected using a single-row laser range finder. 
The moving feet profiles were extracted from raw data and spatially integrated 
into a global coordinate system. A simplified Kalman filter was used to track pe-
destrian trajectories. The method was evaluated using real-world and simula-
tion-based data. The results suggest that the developed method has some limita-
tion to crowded places in the indoor environment compared to the crowded en-
vironment in an open area. 

Cui et al. [16] proposed an algorithm to track people using multiple LiDAR 
sensors in an indoor environment. From the obtained raw data, stable features 
were extracted, which were the movement of legs of people from successive laser 
frames. A tracker was developed based on Kalman Filter. The developed algo-
rithm was tested in the indoor environment at the exhibition hall. The result 
shows that the method was robust and works well compared to conventional la-
ser-based trackers such as measurement split and temporal occlusion.  

Nashashibi et al. [17] introduced a robust method for detecting, tracking, and 
classification vehicles using mobile LiDAR sensors. The algorithm consists of 
three stages to detect and classify an object as a vehicle. The first stage uses the 
Ramer algorithm [18] to create a set of reflected data points using collected dis-
tance data. The Ramer algorithm allows reducing the number of points in a 
curve that is approximated to create a line segment. The second stage classifies 
the objects by analyzing length, vertices, and orientation of the points to the 
sensor. The third stage performs occlusion that handles the missing data causes 
due to obstructed LiDAR’s field of view. The results show that the developed 
methodology was able to classify the objects as vehicles in the background of the 
noisy data. 

Thuy and León [19] proposed a method to track an object over time using two 
dimensional (2-D) LiDAR. The researchers introduced a multi-modal object- 
tracking algorithm that employs a particle filter-based solution. The study’s pri-
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mary objective was to eliminate the error propagation that occurred in the 
tracking due to a linear Kalman filter. The study used particle filter-based Monte 
Carlo simulations for object tracking to model the non-linear process. The sug-
gested method was applied to the data collected by two separate one-layer scan-
ners (2-D LiDAR), which are synchronized with an angular resolution of a half 
degree and an overall angular range of 180 degrees. Data was collected by 
mounting one of the LiDAR on the front bumper and the second LiDAR on the 
rear bumper. The vehicle was equipped with the Inertial Measurement Unit (IMU) 
and combined with a DGPS to obtain the precise location of the vehicle and Li-
DAR. The result showed that the proposed method reduces the error while 
tracking an object in a 2-D LiDAR environment.  

Taipalus and Ahtiainen [20] presented an algorithm for detecting and track-
ing walking humans using 2-D mobile LiDAR. The algorithm consists of two 
separate steps; the first step identifies the detected cluster, and the second step 
tracks the defined cluster over time within the scanning range of the LiDAR. A 
list of predefined features is provided in the process to identify the detected 
cluster points as a human. Based on the predefined features, if the two different 
clusters satisfy the condition, the object is defined as a human, and the human 
target is generated to track within the scanning range. 

Tarko et al. [21] developed a traffic scanner (TScan) method to measure and 
collect traffic data at an intersection accurately. A 64 channel 3-D Velodyne 
HD-LiDAR was used to collect the traffic data. Distance information from the 
sensors was grouped and applied to spherical coordinates to identify the back-
ground objects. The clustering method was applied every time an object was 
identified to determine if the collected points were from the same object or not. 
The clustering method was used to analyze the gap between the two successive 
LiDAR points; the threshold value was set to identify the points from the differ-
ent physical surfaces. Once the detected object was identified, a Kalman filter is 
applied to track the vehicle through the scanning range of the LiDAR. After 
tracking, the individual moving objects were classified into heavy and non-heavy 
vehicles, bicycles, and pedestrians. The results indicate that the method meas-
ured the vehicle positions and speeds with higher accuracy. 

Kluge et al. [22] presented a method to track multiple objects using laser range 
finder data. The method consists of steps such as object identification, object ex-
traction, object matching, and object tracking. Objects were extracted from the 
laser range finder by calculating the difference between the successive laser range 
obtained data; if the difference is higher than the threshold, the obtained data is 
identified as an object. Object identification and extraction were made by seg-
menting the scanning data into different groups, and the threshold value was 
chosen to identify the maximum gap and classified as different objects. A graph 
theory [23] and bipartite graph [24] were used to correspond the object of one 
scan into the successive scans. 

To this point, it is observed that in the previous research efforts, the LiDAR 
applications for object tracking and traffic data collection are conducted under a 
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controlled environment using expensive 3-D LiDAR sensors. Moreover, the ap-
plication of LiDAR is mainly studied for autonomous vehicle applications by in-
tegrating it with image sensors, GPS, etc. Additionally, no research has been 
conducted focusing on the turning movement counts at an intersection using 
low channel LiDAR sensors. This paper proposed a framework to utilize two 
channel LiDAR sensors by integrating K-means clustering, an inverse sensor 
model and discrete Kalman filter. 

3. Framework Development 

This section discusses the different stages of the proposed framework and its 
components in detail to develop vehicles’ trajectory.  

The methodology consists of four primary stages as shown in Figure 1. Stage 
1 consists of the application of K-means clustering technique to identify vehicle’s 
presence by differentiating pedestrian and actual vehicle based on calculated 
means of clustered data points obtained from each scanning cycle. In stage 2, an 
inverse sensor model is applied to localize detected vehicles using consecutive 
calculated means from the previous stage. Obtained output at the end of stage 2 
could be used to plot the vehicles trajectory. However, considering the manu-
facturing error of the LiDAR an additional stage 3 is added to the framework. In 
stage 3, a Discrete Kalman Filter is applied to deal with certain noisy localized 
data points and predict vehicles trajectory. In stage 4, predicted trajectories are 
used as an input and a standard deviation along the primary axis is studied to 
identify the vehicles’ trajectories as through, left or right. Detailed steps of stage 
4 are shown in Figure 5. 

In stage 1, only azimuth (α) with its corresponding distance (cm) information 
are used as an input. In the developed framework a K-means clustering is ap-
plied for each scanning cycle to calculate mean values of the clustered data. 
K-means clustering is also used to differentiate between two vehicles as shown in 
Figure 2. Since the number of data points generated by pedestrians is apparently 
less compared to vehicles it is easier to remove the discard narrowly clustered 
points. 

In stage 2, the calculated means of the clustered data from consecutive scan-
ning cycles are used in inverse sensor model to localize its presence in the FOV 
of LiDAR sensors and the distance between two vehicles is used to differentiate 
different vehicles. Since collected data consists of noises and does not produce 
accurate vehicles trajectory, a Discrete Kalman Filter is used in stage 3 to predict 
the trajectories from the known localized presence points and remove the outlier  
 

 

Figure 1. Four tage approach for vehicle trajectory development. 
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Figure 2. Multiple vehicle presence in LiDAR Field of View (FOV). 
 
data points to obtain a clean trajectory as shown in Figure 3. Furthermore, a 
threshold value of ±2 feet is applied to the predicted trajectories to further re-
move the outliers. Figure 3(a) and Figure 3(b) represent a North Bound 
through movement of a vehicle after threshold window is defined to remove the 
outlier data points. 

After obtaining the clear vehicle trajectory, the vehicle’s movement at the in-
tersection is identified by calculating the standard deviation of vehicles’ localized 
point along primary axis at each intersection in stage 4. In this study, the axis 
perpendicular to the entrance point of the vehicle into the intersection is consi-
dered a primary axis. It is observed that the range of variation for through 
movement varies from 0.2 feet to 0.9 feet whereas the variation for non-through 
movements is between 1 foot and 11 feet as shown in Figure 4. The variations 
along the primary axis are caused due to the lateral movement of the vehicles 
which are traversing away or towards the LiDAR location in this study Figure 5 
shows the proposed framework of the methodology including a detailed flow 
chart of stage 4 to construct vehicle trajectories that are used to identify turning 
movement counts. 

3.1. K-Means Clustering 

K-Means clustering is an unsupervised machine learning technique to cluster the 
different data points into K clusters by calculating the nearest means. Unsuper-
vised machine learning is selected since it can divide the datasets into different 
groups without any known label, unlike supervised machine learning techniques. 
The K-Means clustering method uses an iterative process to achieve minimum 
distance between the centroid of the “K” groups and assigned data points to that 
group. The less variation within clusters, the more homogeneous (similar) the 
data points are within the same cluster.  

Equations from (1) to (3) explain the K-Means Clustering algorithm. A set of 
data { }1 2 3, , , , nx x x x  is defined as an input to the K-mean clustering, where 
the defined data set is a d-dimensional data. The algorithm’s primary objective is  
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(a) 

 
(b) 

Figure 3. North bound through movement at an intersection 1. (a) Before application of 
threshold window; (b) After application of threshold window. 
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Figure 4. Observed standard deviation of vehicles’ localized point along primary axis at 
each intersection. 
 

 

Figure 5. Framework of proposed methodology with detailed stage 4. 
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to assign the input data into the “k” cluster by minimizing the Euclidean dis-
tance between each set of data points and the centroid of the cluster. The objec-
tive function is defined as below, 

2

1 1
arg min

k n
j

jk k
k j

S xω µ
= =

= −∑∑                     (1) 

where, 
1jkω =  for data points jx  if it belongs to cluster k else 0jkω = . 

kµ  is the centroid of cluster jx . 
The minimization process is conducted in two parts. First the Equation (1) is 

minimized with respect to ( jkω ) to assign the point to the closest cluster and 
later centroid ( kµ ) for each cluster is adjusted. During the minimization process, 
the function S is differentiated with respect to jkω  and updates the cluster as-
signments as shown in Equation (2). Second the function S is differentiated with 
respect to kµ  and computes the centroids after the cluster assignments from 
the previous step as described in Equation (3). In the proposed methodology, the 
K-Means Clustering is used to identify presence of multiple objects in the Li-
DAR field of view. 

2
2

1 1

1 if arg min

0 otherwise

jk n
j j k

k
k jjk

k xs x µµ
ω = =

 = −∂ = − ⇒ 
∂ 

∑∑           (2) 

( ) 1
1

1

2 0
n j

jkn jj
jk k k mj

k jkj

xs x
ω

ω µ µ
µ ω

=
=

=

∂
= − = ⇒ =

∂
∑

∑
∑

              (3) 

3.2. Inverse Sensor Model 

The inverse sensor model is often used in robotics to generate a surrounding 
map using range information collected by LiDAR or RADAR with the robot’s 
known position. An inverse sensor model is primarily defined as a state model 
for occupancy grid mapping. The state model consists of a map of the sur-
rounding area, that is used to identify the detected objects’ location by convert-
ing polar coordinates to cartesian coordinates { },n mx x . In the state model, the 
distance measurement from the known LiDAR position is used to identify the 
objects’ exact coordinates on a grid map using Equations (4) and (5). A known 
state of the LiDAR is given by { }, ,n mx x θ . 

1, 1

2, 2

cos sin
sin cos 0

occ

occ

x xd
x x

θ θ
θ θ

      
= +      −      

                 (4) 

1, 1

2, 2

1occ

occ

i x
ceil

i xr
    

=     
    

                      (5) 

Since the LiDAR is generating multiple light beams and collecting distance 
measurements at the different azimuths (angles) the Equations (4) and (5) can 
be written as. 

( )
( )

cos
sin

nk k k n

mk k k m

x d x
x d x

θ α
θ α

 +   
= +    +    

                 (6) 
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,

,

1n occ n

m occ m

i x
ceil

i xr
    

=     
    

                     (7) 

where, 

,n occx  = Location of the nth occupied cell on the x axis of the grid map from 
LiDAR ( )1,2,3, ,n K=  . 

,m occx  = Location of the mth occupied cell on the y axis of grid map from Li-
DAR ( )1 2 3, , , ,k Kα α α α α=  . 

Distance measurements: ( )1 2 3, , , ,k Kd d d d d=  . 
Direction of rays (azimuth): ( )1 2 3, , , ,k Kα α α α α=  . 

3.3. Discrete Kalman Filter 

The Kalman filter is one of the popular approaches that has been used to esti-
mate the state of the dynamic system over the period. In this study discrete Kal-
man Filter is used for the prediction and tracking of the detected vehicles. Fur-
thermore, it helps to deal with noisy data. During the application of an algo-
rithm, the state is assumed to be a linear system with a gaussian distribution. 
The discrete Kalman filter consists of two main steps: 1) Prediction and 2) Cor-
rection. A prediction step allows estimating the current state and error cova-
riance to obtain the priory estimates for the next time step. The correction step is 
responsible for feedback by incorporating a new measurement into the priori es-
timate to get an improved estimation.  

Equations (8) and (9) represent the state prediction steps of the discrete Kal-
man filter. A constant velocity model is used for the Kalman filter, which is a 
renowned model to track moving objects. The model assumes that the velocity 
of an object is constant throughout the sampling interval. 

1
ˆ ˆ

S S s sX A X B u w−= ∗ + ∗ +                      (8) 
T

1s s sP A P A Q−= ∗ ∗ +                        (9) 

where, 
1 0 0
0 1 0
0 0 1 0
0 0 0 1

t
t

A

∆ 
 ∆ =
 
 
 

                      (10) 

( )

( )

2

2

0
2

0
2
0

0

t

tB

t
t

 ∆
 
 
 ∆=  
 
 ∆ 

∆  

                      (11) 

4
4
1
1

u

 
 
 =
 
 
 

                           (12) 
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u = control variable of matrix 
w = predicted state noise matrix 
Q = process noise covariance matrix 
X = state matrix 
s = current step 

1s −  = previous step 
P = state covariance matrix 
A control variable in Equation (8) is an acceleration parameter of a vehicle at 

an intersection. Since the constant velocity model is defined for the Kalman fil-
ter, the acceleration of a vehicle is assumed constant with the value of 4 ft/s2 
(1.22 m/s2) [25]. In Equation (9), Q preserves the state covariance matrix to be-
come too small or zero and it is represented as shown in Equation (13). 

1 0 0 0
0 1 0 0

0 1 0
0 0 1

A
t

t

 
 
 =
 ∆
 

∆ 

                      (13) 

Here, ∆t represents the time difference between consecutive LiDAR scanning 
cycles. Equations (14) to (17) explain the measurement update steps. Equation 
(15) represents the update with the measurement by incorporating Kalman gain 
(K). A Kalman gain is represented as per Equation (14), which is a weight factor 
based on the comparison of errors in the estimate and those in the measure-
ment. Equation (17) calculates a posterior error covariance. At the end of each 
update measurement step the process is repeated with posterior estimates to 
predict a new prior estimate. Figure 6 shows the detailed representation about 
the Discrete Kalman Filter algorithm. 

( ) ( ) 1T T
s s sK P H H P H R

−
 = ∗ ∗ ∗ ∗ + 

                (14) 

( )ˆ ˆ ˆ
s s s s sX X K Y H X = + ∗ − ∗                   (15) 

 

 

Figure 6. Discrete Kalman Filter essential flow chart. 
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where, 
R = sensor noise covariance matrix 
Ys = measurement input 

( )s s sY H X m= ∗ +                      (16) 

( )s s sP I K H P= − ∗ +                      (17) 

2

2

0.6542 0 0 0

0 0.6542 0 0

0 0 1 0

0 0 0 1

R

 
 
 

=  
 
 
 

               (18) 

A sensor noise covariance matrix R is represented, as shown in Equation (18). 
Sensor noises often occur during transmitting and receiving the signals caused 
by either faulty communication or power supply. Data imputation is adopted to 
study the measurement noises of the LiDAR sensor during the data collection 
procedure. Random scanning cycles (pair of azimuth & distance) are selected 
from the data sets, which have no missing values. To apply data imputation, 
some distance information is randomly removed and predicted using data im-
putation. A linear interpolation-based imputation technique is applied. Calcu-
lated standard deviation (feet) is compared with the manufacturers’ defined 
measurement error (feet). Equation (19) represents the basic idea of linear re-
gression. The observed standard deviation after data imputation is 0.652 feet 
(19.89 cm). The error in measurements provided by the manufacturer is 0.591 
feet (18 cm), which is nearly equal to the calculated standard deviation in data 
imputation. 

( )i n i
i i

i n i

y yy y x x
x x
+

+

+
− = −

+
                  (19) 

where, 
x = Initial azimuth value 
y = Missing distance information 

ix  = Incremental Azimuth values 

iy  = First nonzero distance information in vector 

i ny +  = Last nonzero distance information in vector 

i nx +  = Last Azimuth Value 

4. Proof of Concept Test 

The turning movement data was collected from busy intersections located in 
Newark, NJ in proximity to the New Jersey Institute of Technology to test the 
accuracy of the proposed methodology. Table 1 provides detailed information 
about the data collection setup. The LiDAR sensors are installed at 3’ to 3.5’ 
from the ground to get enough reflection from the vehicles’ surface as indicated 
in Figure 7.  
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Figure 7. LiDAR sensor installation at an intersection for turning movement data collection. 
 
Table 1. Data collection time period and LiDAR configurations for turning movement counts. 

Intersection 
Number 

Intersection Name Time period 
Rotation 

Frequency (Hz) 
Sample Rate 

(Hz) 
Number of 

LiDAR 

1 Central Ave. & Lock St. 16:23 to 18:17 10 1000 3 

2 Warren St. & Dr. MLK BLVD 11:26 to 12:54 10 1000 4 

 
At each intersection, a minimum of three LiDAR sensors are installed to cover 

all the approaches as shown in Figure 8. The primary reason to deploy multiple 
sensors at the intersections is to deal with occlusion problems. The occlusion is 
often caused by two vehicles traveling side-by-side or detecting a vehicle ob-
structed by pedestrians. Enhancement in the detection is the second reason to 
place multiple sensors since it is observed that the detection ability of Scanse 
Sweep LiDAR in an open area is reduced while scanning a horizontal plane. A 
python-based program is used to automate the data collection process, which 
allows the collection of the data for a more extended time without any external 
interruption. Raspberry pi minicomputers are used to run a python script and 
save collected data. All LiDAR sensors are connected to Raspberry pi minicom-
puters, which are connected to the Wi-Fi hotspot to synchronize the clock of 
sensors. Synchronization of the timestamp is essential since it allows to identify 
multiple detections of a discrete vehicle. 
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(a) 

 
(b) 

Figure 8. Graphical representation of studied intersections with lidar placement. (a) In-
tersection-1: Central Ave and Lock Street. (b) Intersection-2: Dr. Martin Luther King and 
Warren Street. 
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5. Results 

First, the collected LiDAR data are processed independently from each other to 
capture the vehicle trajectories by applying the steps described in framework 
development. The nearest LiDAR for each movement is used to capture the 
turning movements. For the application of the inverse sensor model to localize 
the detected vehicles, a grid map of 50 feet × 50 feet is defined with known Li-
DAR position at (0, 0). Individual cell dimension is defined as 1 foot × 1 foot. 
The obtained turning movement counts from each intersection are then com-
pared with ground truth count, which was obtained using video recording. 

The distribution of the variations along the primary axis has a normal distri-
bution, which justifies the application of discrete Kalman Filter with the assump-
tion of the gaussian distribution of data. The accuracy for all the left-turning 
movements was below 70%. To improve the left turning movement counts, the 
trajectories within the intersection are studied to improve the accuracy of the 
proposed method. Movements that are not captured by a single LiDAR at the 
nearest corner due to but captured in the middle of the intersection with mul-
tiple sensors are studied and a timestamp for a detected vehicle is used to reduce 
the double count errors. Figure 9 shows the accuracy for each turning movement 
at intersection 1. Unlike intersection 1, intersection 2 has more observed pede-
strian activity. Furthermore, intersection 2 was wider compared to intersection 
1, and low accuracy was noticed compared to intersection 1. Figure 10 shows 
the accuracy for each turning movement at intersection 2. 

Figure 11 and Figure 12 represent the R-squared value for the X and Y axes 
between proposed method-based localization points and reference points. The 
data were selected randomly from both locations to study the relation between 
LiDAR-based reference points of each axis vs. model-based localized points. The 
obtained R-squared value ranges between 0.87 and 0.89, which shows that the 
developed methodology can localize the detected object accurately. 
 

 

Figure 9. Obtained results comparison with ground truth data (Intersection-1). 

https://doi.org/10.4236/jtts.2023.134024


R. Jagirdar et al. 
 

 

DOI: 10.4236/jtts.2023.134024 540 Journal of Transportation Technologies 
 

 

Figure 10. Obtained results comparison with ground truth data (Intersection-2). 
 

 

Figure 11. Comparison between LiDAR based reference points of X axis vs. proposed 
model based localized points. 
 

 

Figure 12. Comparison between LiDAR based reference points of Y axis vs. proposed 
model based localized points. 
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Table 2. Accuracy comparison of proposed methodology with recent research works. 

 
Proposed 

Methodology 
Xu et al. 

[26] 
Yang 
[27] 

Bandaru 
[28] 

Sualeh et al. 
[29] 

Accuracy (%) for detection 83% - 94% 95% - 97% 93% 90% 88% 

Accuracy (%) for tracking 79% - 87% 94% - 97% NA 96% - 98% 88% 

6. Conclusions 

This paper presents a framework to detect, localize, and track vehicles at signa-
lized intersections for turning movement counts by applying K-means cluster-
ing, inverse sensor model, and Kalman filter-based methods. The data from two 
intersections were collected to study the effectiveness of the proposed turning 
movement count methodology. Unlike state-of-the-art data collection sensors 
such as RTMS and Video Detection systems, the LiDARs are placed parallel to 
the roadway surface to scan the horizontal plane from the height of 3' - 3.5' from 
road surface. A minimum of three LiDAR sensors were used at an intersection 
during the data collection—the LiDAR sensors were placed at each corner of an 
intersection. 

The sensors were connected to Raspberry pi minicomputer to store the data. 
The raspberry pi was connected to the external power supply, and a Wi-Fi net-
work to accurately synchronize the system clock. The conducted data analysis 
shows that the proposed methodology can accurately detect, localize, and track 
79% - 88% of vehicles within the intersection. The movement counts obtained 
from individual LiDAR are also compared with ground truth. The comparison 
indicates the lower accuracy (<75%) for the left-turning movement for each di-
rection, mainly caused due to the occlusion and missing data. 

The developed methodology can also be used for vehicle delays at an intersec-
tion. By making LiDAR sensors more Internet of Things (IoT) infrastructure 
friendly, it will allow city authorities to achieve the “Smart Cities” concept. Fur-
thermore, the proposed method’s accuracy is compared with the recent research 
works that used 16, 32, or 64 channels 3-D LiDAR to conduct traffic data collec-
tion, as shown in Table 2. 

7. Recommendations 

For the future research work, the team will investigate following things: 
1) A constant velocity model based Kalman filter is used in the proposed ap-

proach; 
2) An unscented Kalman filter should be considered; and  
3) Different types of signalized intersections with various lane configurations 

will be studied. Increase the number of LiDAR sensors at an intersection to re-
duce the occlusion effect and improve the accuracy. 
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