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Abstract 
The relativistic harmonic oscillator represents a unique energy-conserving 
oscillatory system. The detailed characteristics of the solution of this oscilla-
tor are displayed in both weak- and extreme-relativistic limits using different 
expansion procedures, for each limit. In the weak-relativistic limit, a Normal 
Form expansion is developed, which yields an approximation to the solution 
that is significantly better than in traditional asymptotic expansion proce-
dures. In the extreme-relativistic limit, an expansion of the solution in terms 
of a small parameter that measures the proximity to the limit (v/c)  1 yields 
an excellent approximation for the solution throughout the whole period of 
oscillations. The variation of the coefficients of the Fourier expansion of the 
solution from the weak- to the extreme-relativistic limits is displayed. 
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1. Introduction 

Unlike many energy-conserving oscillatory systems, the relativistic harmonic 
oscillator (RHO) represents a unique case. In many of these systems, the nonli-
nearity is a nonlinear function of the amplitude, x(t). Usually, the occurrence in 
the nonlinearity of the velocity, ( )x t , represents damping and energy non-con- 
servation. The RHO is an energy-conserving system, in which the nonlinearity 
involves the velocity. Furthermore, in popular systems, as the amplitude of os-
cillation, a, tends to infinity, the period of oscillations, T, tends to zero and the 
maximal velocity tends to infinity. In the case of the RHO, the period tends to 
infinity and the velocity tends to a constant, the speed of light, c. 

The study of relativistic oscillations has progressed in several avenues: The ex-
ploitation of relativistic oscillators for the purpose of the description of bound 
states of quarks in High-Energy Physics [1] [2] [3] [4]; The study of the Dirac 
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oscillator theoretically [5]-[12] and experimentally [13] [14], and the Quan-
tum-Mechanical RHO [15]-[23]. Oscillations in the weak-relativistic limit have 
been of interest in Plasma Physics [24]-[36]. The emergence of chaotic behavior 
in a parametrically forced relativistic van der Pol oscillator is discussed in Ref. 
[37]. The behavior of an ensemble of RHO’s is studied in Ref. [38]. Interest in 
the RHO, in both weak- and extreme-relativistic limits has won renewed atten-
tion in the study of media, through which light propagates at velocities that are 
much lower than its speed in vacuum. A recent example is that of the dynamics 
of an oscillator composed of ultra-cold Bose-condensed atoms [39] [40] [41], 
where the effective speed of light is lower than in vacuum by orders of magni-
tude, e.g., 143 mm/s [41]. The energy-momentum relation of the atoms is nearly 
identical to that of a massive relativistic particle, with an effective mass. 

Over many years, the major effort in the analysis has been dedicated to ei-
ther generating numerical solutions or to various approximation schemes in 
the weak relativistic limit by expansions in powers of β2 ( ( )max x cβ =  ) for 

1β   [42]-[50]. Owing to the emergence of secular terns in asymptotic expan-
sion methods, the validity in time of approximate solutions is limited. Typically, 
the lowest-order approximation (O(β2)) in such analyses has a 1% - 2% error 
relative to the numerical solution up to only β ≈ 0.2. One important result of Ref. 
[43] is the presentation the period of oscillations in the frame of reference of an 
outside observer in terms of complete elliptic integrals. 

Qualitative progress has been attained through the exploitation of the trans-
formation from the time variable in the observer’s frame of reference to that of 
the oscillating mass (proper time) [51]-[57]. The oscillation period in proper 
time was derived in terms of a complete elliptic integral in Ref. [51]. The equiva-
lence of the equation of motion of the RHO with a specific form of the equation 
of motion of a Duffing equation was found in Refs. [52] [53] [55] [57]. This has 
led to the derivation of a closed-from solution for the equation of the RHO in 
terms of Jacobi elliptic functions [51] [56]. 

The purpose of his paper is to expose the detailed characteristics of the solu-
tion of the equation of motion of the RHO in the weak- and extreme-relativistic 
limits. 

Preliminary information is presented in Section 2. Exploiting the known 
closed-form expressions of the period, T, and the oscillation amplitude, xmax, the 
time and position variables, t and x, are transformed in Section 3 into dimen-
sionless variables, θ and η, respectively. η is (2π)-periodic in θ and bounded: |η| 
≤ 1. This transformation relieves the analysis in the weak-relativistic limit of the 
restriction on the validity in time of approximate solutions, encountered in 
standard asymptotic expansion perturbative analyses of the weak-relativistic 
limit. In addition, it naturally leads to a novel approach to the analysis of the ex-
treme-relativistic limit. 

The weak-relativistic limit is discussed in Section 4 through a Normal Form 
expansion [58]-[66]. As the solution is (2π)-periodic in θ, there is no need to 
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worry about the growth of secular errors in the approximate solution for 1θ  . 
A direct consequence is that the error in the approximate solution turns out to 
remain very small up to rather high values of β. For example, in an expansion 
through O(β2), the approximations for the dimensionless position, η, and for the 
velocity, η', agree with the full numerical solution within a fraction of 1% up to β 
≈ 0.6 and β ≈ 0.45, respectively. 

The expansion in powers of β2 fails in the extreme relativistic limit (β  1). In 
this limit, over most of the period of oscillations, the velocity x , oscillates be-
tween two constant values, ± vmax, (vmax = c·β) and is reduced to zero rapidly over 
a short time interval near the turning point. The analysis is presented in Section 
5 through the introduction of a small parameter, μ, which measures the proxim-
ity to the extreme relativistic limit. 

Near the turning point (θ = 0), the velocity varies rapidly over a range of O(μ2) 
in θ. Hence, for finding an approximate solution for η over this narrow range in 
the extreme-relativistic limit, a variable transformation is required, 2 zθ µ= , so 
that z is of O(1). The resulting expansion of the solution in powers of μ2, ex-
pected to provide a good approximation to the solution near the turning point (θ 
= O(μ2) (z = O(1))), generates an excellent approximation to the solution for 0 ≤ 
θ ≤ 2π, even in the lowest order in μ2, for small μ. Unique features of the Fourier 
expansion of the solution are discussed in Section 6. Some concluding comments 
are presented in Section 7. 

2. Preliminaries 

The dynamical equation of the RHO is: 

( )( )2 3
2
0 2 0

1

xm x m
x c

ω + =
−





,                      (1) 

where m is the mass of the oscillation particle, ω0 is the period of the oscillator in 
the non-relativistic limit and c is the speed of light. 

The total energy is given by: 

( )
( )( )

2 2
2 2
0 2 2

1 , max
2 11

mc mcE m x x c
x c

ω β
β

= + = =
−−





.       (2) 

Solving Equation (2) for x  yields the period of oscillations, T [43]: 

( ) ( )
2

2

22 2
0

1 11 1 14 2 1 1 1 ,
11 1 1

T E k K k k
β

ω ββ β

    − −    = + − + =
   −− + −   

. (3) 

In Equation (3), E(k) and K(k) are the complete elliptic integrals [67]: 

( ) ( ) ( )2 2 2 2

0 0

2 2

1 sin d , 1 1 sin dE k k K k kϕ ϕ ϕ ϕ
π π

= − = −∫ ∫ .    (4) 

The maximal values of the amplitude of oscillations and of the velocity are ob-
tained by setting 0x =  and x = 0, respectively, in Equation (2), yielding: 
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( )

2

max m4 ax
20

1

1 1
2 ,

1

cx x c
β

β
ω β

− −
= =

−
 .                (5) 

In the limit of small relativistic effects ( 1β  ), the expansion of E, T (using ex-
pansions of elliptic functions presented in [67]) and xmax in powers of β2 is given 
by: 

 

( )

( )

( )

( )

2 2 4 6 8

2 4 6 8

0

2 4 6 8
max

0

2 4 6 8max

1 3 51
2 8 16

2 3 129 15951
16 1024 16384

3 31 1871
8 128 1024
3 83 7611

2 16 1024 16384

E mc O

T O

cx O

x c O
T

β β β β

β β β β
ω

β β β β β
ω
β β β β β

 = + + + + 
 
 = + + + + 
 

 = + + + + 
 

 = + + + + 
π 

π

         (6) 

In the far relativistic limit ( 1β ≈ ) it turns out to be convenient to define a new 
small parameter: 

 ( )2 41 , 1β µ µ= −  .                       (7) 

Equation (6) is then replaced by (the expansion of the elliptic integrals can be 
found in Ref. [67]): 

 

( )

( )

( )

( ) ( )

2

2

4 8

0

2 4 6 8
max

0

2 4max

6 8

4 2 1 3 6log 2 4log1
16

1 1 1 12 1
2 8 16

1 11 1 6log 2 4log
4 2 16

1 5 6log 2 4log
32

mcE

T O

cx O

x c
T

O

µ

µµ µ
ω µ

µ µ µ µ
ω µ

µ µ µ

µ µ µ

=

− + = − + 
 

 = − − − + 
 

= − + − +


− − + + 


           (8) 

Note that both T and xmax tend to infinity as E1/2. 
Figure 1 shows the phase-space plot of the numerical solution of Equation (1) 

for a sequence of values of β. x and t are expressed in terms of dimensionless 
entities: 

( ) ( ) ( )0 0 0,t X c xτ ω τ ω τ ω= = .                  (9) 

 

 
Figure 1. Phase space plots of solution of Equation (1) in terms of dimensionless entities 
(Equation (9)). From inner to outer plot: β = 0.1, 0.5, 0.999. 
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At high values of β, the phase-space plot tends to a rectangle. This has been ob-
served in the many numerical analyse cited above. 

3. Scaled Equation 

Rescaling x and t as follows: 

 ( ) ( ) ( )max 0, 2x t x t Tη θ ω θ= = π ,                 (10) 

Equation (1) becomes 

 ( ) ( )

( )

2

2
0 2max

3 2

2 0
21

T x
cT

η θ
η θ

ω
η θ

′′ 
+ = 

     ′−     

π

π



.             (11) 

η(θ) is (2π)-periodic in θ and bounded: |η(θ)| ≤ 1. Exploiting Equations (10) and 
(6), yields that the maximal values of η and η' are both finite for all 0 ≤ β2 ≤ 1: 

 

( )

( )( )
( )

( )

max

2 4

max 2
4max

max 1

31 0
16max

2 2 log 1

O
cT
x

O

η η

β β β
βη η θ

µ µ µ β

≡ =

 − + →  ′ ′≡ = →  π
π π


   + + →

 (12) 

Figures 2-4 show the dependence of the solution on β. For 1β  , the 
phase-space plot is very close to a circle. As β is increased, it approaches a rec-
tangle. Concurrently, η' evolves from a sine-like function of θ to a periodic step 
function and that of η – to a saw-tooth pattern. 

For 1β  , Equation (11) is reduced to the equation of a classical harmonic 
oscillator perturbed by a small nonlinear term: 

 

 
Figure 2. Phase-space plots, numerical solution of Equation (11). 
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Figure 3. η(θ) vs. θ, numerical solution of Equation (11). 
 

 
Figure 4. η'(θ) vs. θ, numerical solution of Equation (11). Horizontal lines are maximal 
values of η'. 
 

( ) ( )( ) ( )

( )( ) ( )( )3
2

22
2

2
1 0

1 1
O

O

η θ
η θ β

β β η θ

′′
+ + =

′− +
.         (13) 

Hence, this calls for an expansion in powers of β2. 
In the extreme-relativistic limit, Equation (11), using Equations (7) and (8), 

and expanding in powers of 1µ  : 

 ( ) ( )( ) ( )

( )( ) ( )

2
2 4

2
2

2
4

3
2

1 log 0
8

1 1
4

O

O

η θ
η θ µ µ µ

µ µ η θ

′′
+ + =

  
′− − +     

π

π
. (14) 

4. Weak-Relativistic Limit 

A convenient way to analyze Equation (11) is to transform it to a first-order eq-
uation for a complex entity: 

 ( ) ( ) ( )z iθ η θ η θ′= + .                     (15) 

Expressing η and η' in terms of z and z*, Equation (11) is transformed into: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

*

22
3 2

2* *
0 max

2

2
1

2 2 2

z z
z

i

z z z zT x
i

cT i

θ θ
θ

θ θ θ θω

−
′ =

   + −     + − −              

π

π
 

    (16) 

The boundary conditions at the turning point are: 

 ( ) ( ) ( ) ( ) ( ) ( )* *0 0 0 0
0 1, 0 0

2 2
z z z z

i
η η

+ −
′= = = = .         (17) 

One now writes z(θ) as: 

 ( ) ( ) ( ) ( ) ( )2 4 6
0 2 4 6z z z z zθ θ β θ β θ β θ= + + + +           (18) 

and exploits the expansion of T and xmax (Equation (6)) to obtain an expansion 
of Equation (16) in powers of β2. 

The zero-order term of this expansion yields: 

 ( ) ( ) ( ) ( )0
0 0 0 0e iz iz z θ θθ θ θ ρ − +′ = − ⇒ = .               (19) 

Thus, as expected, the zero-order term is (2π)-periodic in θ. The O(β2) term in 
the expansion of Equation (16) is: 

 ( ) ( ) ( ) ( ) ( )( ){ }2 3
2 2 0 0 0 0 0

3 1 cos cos 3
8

z iz iθ θ ρ ρ θ θ ρ θ θ′ = − − − + + + .     (20) 

For the solution to be periodic in θ, the coefficient of the resonant term cos(θ + 
θ0) must vanish, yielding 

 0 1ρ = .                            (21) 

One now proceeds in the same fashion through higher orders, requiring that 
the higher-order corrections, z4 and z6 of Equation (18) are periodic in θ (i.e., the 
coefficients of resonant terms in the dynamical equations for z4 and z6 vanish) 
and that the initial conditions are obeyed by the zero-order term: 

( ) ( ) ( ) ( )0 0 0 00 0 0 0
1, 0

2 2
z z z z

i

∗ ∗+ −
= = .              (22) 

The result is the following expression for η: 

( ) ( )

( )

2 4

6 8

3 97cos 72cos3 25cos5cos cos cos3
64 4096

11619cos 6786cos3 4000cos5 833cos 7
786432

O

θ θ θη θ θ β θ θ β

θ θ θ θβ β

− + + = + − + +  
 

− + + + + + 
 

(23) 

The fact that the period, T, is known explicitly means that the restriction of 
the validity of the approximation that emerges in well-known asymptotic expan-
sion methods is avoided. In these methods, the period is approximated by a 
truncated expansion in powers of the small parameter, limiting the validity of 
the approximation to times of O(1) or O(1/β2), depending on the analysis me-
thod used. This limitation is avoided here. The approximation to the full nu-
merical solution up the rather high values of β is excellent. For β = 0.1, the 
maximal relative error generated by the approximate solution of Equation (23) is, 
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at most, O(.01%). In expansions through O(β2), O(β4) and O(β6), the approxi-
mation for η agrees with the full numerical solution of Equation (11) within a 
fraction of 1% up to β ≈ 0.6, 0.7 and 0.8, respectively, for all θ. The approxima-
tion for η', agrees with the full numerical solution within a fraction of 1% up to β 
≈ 0.4, 0.55 and 0.65, respectively, for all θ. Even for β ≈ 0.8, the relative error of 
the approximate expression for the amplitude (through O(β6), Equation (23)) 
varies between 0 and close to 1% (see Figure 5) and for the velocity—between 1% 
and 5% (see Figure 6). 

5. Extreme Relativistic Limit 

In the extreme relativistic limit, the expansion in powers of β2 fails. Figures 
7(a)-(c) show how the approximate solution (Equation (23)) begins to deviate  
 

 
Figure 5. Error in approximate solution for η(θ) Equation (23) relative to numerical so-
lution of Equation (11), β = 0.8. 

 

 
Figure 6. Error in approximate velocity η'(θ) computed from Equation (23) relative to 
numerical solution of Equation (11), β = 0.8. 
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Figure 7. Phase-space plots showing evolution of deviation of approximate solution 
(through O(β6), Equation (23)) from numerical solution of Equation (11) for high β. 
Continuous: numerical solution; Dashed: Approximate solution. 
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from the numerical solution of Equation (11) as β grows. The errors in η and η' 
are shown in Figure 8 and Figure 9, respectively, in a computation through 
O(β6), for β = 0.99. The error in η is, at most about 10%. In η', it exceeds 60% 
near the turning point. 

In this limit, the velocity, x , is constant at (±c β) most of the time. It vanishes 
rapidly over a short time gap near the turning point (See Figure 1). In the scaled 
coordinates, the dependence of η on θ is a straight line, except very close to the 
turning point (see Figure 3). 

To guide oneself towards a choice of a scaled variable that is appropriate for 
the analysis of Equation (11) near the turning point, one uses 1µ   of Equa-
tion (7), which is a measures of the proximity to the extreme-relativistic limit. 
Observe that η' is now very close to zero. Using Equation (8) for T and xmax and 
replacing η' by zero in Equation (14), the O(μ2) approximation to the equation 
becomes: 

 

 
Figure 8. Error in approximate solution for η(θ) (Equation (23)) relative to numerical 
solution of Equation (11), β = 0.99. 

 

 
Figure 9. Error in approximate velocity η'(θ) computed from Equation (23) relative to 
numerical solution of Equation (11), β = 0.99. 
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( ) ( )
2

2 0
8

η θ µ η θ′′+ =
π

.                      (24) 

For the boundary conditions at the turning point (θ = 0), η(0) = 1 and η'(0) = 
0, Equation (24) is solved by 

 ( ) 2 2cos θη θ
µ

 
=   

 π
.                      (25) 

Exploiting the leading-order term in η'max (Equation (12)), one finds an ap-
proximation for θS, the value of θ, at which the slope η' from Equation (25) be-
comes equal to the constant (maximal) slope that prevails throughout most of 
the range 0 ≤ θ ≤ (π/2). Equation (25) yields θS = O(μ2): 

 ( ) 2 2
max

11
4 2S Sη θ η θ µ µπ  ′ ′≈ − ⇒ ≈ + 

 
.               (26) 

Thus, for a valid expansion in powers of μ2 near the turning point, one should 
rescale θ as: 

 2 zθ µ= ,                            (27) 

so that z is of O(1). One now expands η(θ) in powers of μ2: 

 ( ) ( ) ( ) ( ) ( ) ( )( )2 4 6 8 2
2 4 61 ,F z F z F z O zη θ µ µ µ µ θ µ= + + + + = .  (28) 

Using Equations (28) and (7), one expands Equation (11) in powers of μ2, and 
solves for the higher-order corrections in Equation (28). The boundary condi-
tions for all F2n are: 

 ( ) ( )2 20 0 0n nF z F z′= = = = .                    (29) 

Through O(μ6), F2n are found to be given by: 

 ( )
2 2

2
1 16
2 2

zF z +π
= −

π
,                     (30) 

( ) ( )2 2

4 2 2

arcsin 41 16
4 4 2 16

z zzF z
z

ππ
π π

+
= − +

+
,               (31) 

 

( ) ( ) ( )

( )
( )

( ) ( )

( ) ( )

6 2 2 2 2

23 2 2

2 2

2 2

2 2

3 2

1 arcsin 4
4 128 8 16 4 16

arcsin 4 4 16log
12864 16

3log 2 log316
64 16 8

1 13 13 log 2 log
64 16 816

z zF z z
z z

z z z

z

z

z

µ

µ

 
 = + − − +
 + + 

 + +
 − +
 + 

π π
π

π π

π π π π
ππ

π
π π π

π π π

π



 
+ + − − + 

 
 + − + − 
 +

     (32) 

Detailed inspection of F2n for 2 n = 2, 4, 6, reveals that they all have the same qu-
alitative dependence on θ. Except very near the turning point (θ = 0) they all 
tend to a linear dependence on θ. They vanish at roughly the same rate as θ va-
ries from O(μ2) down to zero. 
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The surprising result is that an expansion that was meant to be valid around 
the turning point (θ ≈ O(μ2)) yields an excellent approximation to the solution 
throughout 0 ≤ θ ≤ 2 π for small μ. For sufficiently small μ, an excellent ap-
proximation is obtained with just the O(μ2) term: 

 ( ) ( )2
21 F zη θ µ= + .                        (33) 

Figure 10 and Figure 11 show a comparison between the approximation, Equa-
tion (33), and the numerical solution of Equation (11) for μ = 0.1 (β = 0.99995). 
θS is then ≈ 0.0078. To stress the quality of the approximation, Figure 12 shows  
 

 
Figure 10. Comparison between the O(μ2) approximation to the velocity, η'(θ) (using 
Equation (33), dashed) and the numerical solution of Equation (11). μ = 0.1. Dotted 
line—constant limit of velocity beyond turning point. 
 

 
Figure 11. Comparison between O(μ2) approximation to η(θ) (Equation (33), dashed) 
and numerical solution of Equation (11). μ = 0.1. 
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Figure 12. Comparison between the O(μ2) approximation to the position, η(θ) (Equation 
(33), dashed) and the numerical solution of Equation (11) near the turning point. μ = 0.1. 
 
how small the deviation of the approximate solution from the numerical solu-
tion remains even for Sθ θ . Figure 13 shows the relative error in η'. It re-
mains small for all 0 ≤ θ ≤ 2 π. 

Finally, for θ =O(1), namely, away from the turning point, F4[z = θ/μ2] adds a 
μ2 contribution. An excellent approximation is obtained by: 

 ( ) ( )
2 2

421 log
2

Oµ µη θ θ µ µ
 +

= + − + 
 π 

.              (34) 

6. Fourier Expansion 

The evolution of the velocity profile, η'(θ), in the extreme relativistic limit (β  
1, μ  0) into a periodic step function (see Figure 4) offers unique characteris-
tics for the Fourier spectrum of η'(θ). The Fourier coefficients tend to the limit-
ing spectrum of the step function, the latter oscillating between ±(2/π) with a 
cycle length of (2π). The Fourier series for this step function is: 

 ( )
( )2 1 2 1 2

0

8sin 2 1 ,
2 1n n

n
a n a

n
θ

∞

+ +
=

+ = −
+ π∑ .           (35) 

The purpose of this Section is to discuss two aspects. The first is a demonstra-
tion of the qualitative difference between the Fourier spectra in the weak- and 
extremely-relativistic limits. The second is an additional test of the quality of the 
approximate solution obtained in Section 5. 

6.1. Fourier Spectra in Weak- and Extreme-Relativistic Limits 

Figure 14 presents a comparison between the β dependence of the Fourier 
coefficients of η'(θ), obtained from the numerical solution of Equation (11), 
and the spectrum of Equation (35). There is a qualitative difference between the 
β—dependence of the Fourier coefficients for small β and the spectrum of the  
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Figure 13. Relative error between O(μ2) approximation to velocity, η'(θ) (using Equation 
(33)) and numerical solution of Equation (11). μ = 0.1. 
 

 
Figure 14. Fourier coefficients of η'(θ), from numerical solution of Equation (11), and 
spectrum of step-function Equation (35). 
 
asymptotic step-function profile. For small β, the spectrum is dominated by a 
small number of modes. For β  0, the spectrum tends to a single mode, sin(θ). 
The analysis in Section 4 exhibits the β—dependence of the modes for small β: 
sin((2 n +1)θ) modes appear in O(β2n). As β approaches 1, the Fourier coeffi-
cients tend to the limiting spectrum, which is O(1) in μ. 

6.2. Test of Quality of Approximate Solution in  
Extreme-Relativistic Limit 

In Figure 15, a comparison between the Fourier coefficients of η'(θ), computed  
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Figure 15. Fourier coefficients of η'(θ) for approximate solution, Equations (28) and (32) 
and from numerical solution of Equation (11). μ = 0.2. 
 
for the approximate solution, Equations (28) and (32), with those obtained from 
the numerical solution of Equation (11) for μ = 0.2 (β = 0.992) is presented for 1 
≤ 2 n +1 ≤ 41. The relative error between the exact numerical and the approx-
imate values is below 5% for 1 ≤ 2 n + 1 ≤ 13. For μ = 0.1, the error is smaller 
than 0.5% for all 1 ≤ 2 n +1 ≤ 41. 

7. Concluding Comments 

The dynamics of the Relativistic Harmonic Oscillator (RHO) have been analyzed 
in the weak- and extreme-relativistic limits. Exploiting the fact that the period of 
oscillations can be computed in closed form and to any desired level of numeri-
cal accuracy, and using the scaled variables of Equation (10), for β < 1, a Normal 
Forms expansion yields a high quality approximation to the solution that is by 
far better than the standard application of asymptotic expansion methods. 

The same formulation allows for the analysis of the extreme-relativistic limit 
as a boundary-layer problem, leading to a high-quality approximation for the 
solution for all 0 ≤ θ ≤ (2π) for (1 − β) << 1. 
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