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Abstract 
Mathematical models for phenomena in the physical sciences are typically 
parameter-dependent, and the estimation of parameters that optimally 
model the trends suggested by experimental observation depends on how 
model-observation discrepancies are quantified. Commonly used parameter 
estimation techniques based on least-squares minimization of the mod-
el-observation discrepancies assume that the discrepancies are quantified 
with the L2-norm applied to a discrepancy function. While techniques based 
on such an assumption work well for many applications, other applications 
are better suited for least-squared minimization approaches that are based on 
other norm or inner-product induced topologies. Motivated by an application 
in the material sciences, the new alternative least-squares approach is defined 
and an insightful analytical comparison with a baseline least-squares ap-
proach is provided.  
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1. Introduction 

In this paper, we assume that X is the space of all continuous functions 
[ ): 0,f ∞ →   having a Laplace transform :F H →   with  

( ){ }: : 0H s s= ∈ ℜ > . 
Parameters np P∈ ⊆   associates with a time-domain model  
( ) [ ), : 0,m p ⋅ ∞ →   are considered optimal insofar as they yield a minimal 

model-observation discrepancy [ ): 0,ε ∞ →   defined by ( ) ( ) ( ): ,t m p t r tε = − , 
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where function [ ): 0,r ∞ →   is obtained as a regression to a set of 
time-dependent observations. The model-observation discrepancy ε  is as-
sumed to be function-valued, so the phrase “minimal discrepancy” only has 
meaning when ε  is understood to be a member of some norm-induced topol-
ogy ( ),X ⋅ . Having specified the norm-induced topology to which ε  be-
longs, the optimal parameters are then computed as an optimal solution *p  to 
the least squares problem (LSP) 

( ) 2
min ,p P pε∈ ⋅                         (1) 

Two norms on X are considered in formulating the LSP (1). 
The first norm, the baseline norm, is denoted by ,T γ

⋅ , while the second 
norm, the alternative norm, is denoted by ,S s⋅ . (The norms ,T γ

⋅  and ,S s⋅  
on X are defined in Section 2.) The use of the baseline norm ,T γ

⋅  in (1) yields 
a variant of a commonly used LSP for computing optimal model parameters, 
while the alternative norm ,S s⋅  is motivated by the elegant closed-form ex-
pressions for certain models ( ),m p ⋅  undertaking the Laplace transform. This 
is particularly true for certain creep models associated with viscoelastic materials 
[1]-[7]. 

While the use of the alternative norm ,S s⋅  in LSP (1) has been successfully 
applied for computing optimal parameter estimates in [5], a theoretical founda-
tion and justification for the use of the alternative form ,S s⋅  in LSP (1) is in 
need of further development. Refining the developments began in [8] [9], this 
paper addresses the above need in Section 2, where 1) two inner products  

,, :T X X
γ

⋅ ⋅ × →   and ,, :S s X X⋅ ⋅ × →   are defined over X and verified 
with respect to the inner product properties; 2) the norms ,T γ

⋅  and ,S s⋅  are 
induced from the respective inner products ,, T γ

⋅ ⋅  and ,, S s⋅ ⋅ ; 3) from the in-
ner product properties, a bounding relationship is established between the 
norms ,T γ

⋅  and ,S s⋅ ; and 4) insight is obtained from the bounding rela-
tionship into how the parameter solutions p P∈  to LSP (1) ,T γ

⋅ = ⋅  relate 
to the parameter solutions p P∈  to LSP (1) ,S s⋅ = ⋅ . The first three contri-
butions represent a substantial refinement and streamlining of the developments 
in [8] [9], thus paving the way for the fourth contribution which, furthermore, 
builds on the developments in [8] [9]. 

The remainder of the paper is organized as follows. From the developments in 
Section 2, a more simple and improved implementation of a previous applica-
tion [5] becomes evident, and this is presented in Section 3. Computational se-
tup and results are presented and discussed briefly in this same section. Lastly 
Section 4 concludes this paper and provides comments on future work. 

2. Definition and Analysis of the Norms T⋅ ,γ  and S s⋅ ,  

The two norms ,T γ
⋅  and ,S s⋅  are induced, respectively, by the following 

two inner products ,, :T X X
γ

⋅ ⋅ × →   and ,, :S s X X⋅ ⋅ × →   defined in 
the following manner for each pair ,f g X∈  and parameters 0γ >  and 
s H∈ : 

https://doi.org/10.4236/am.2022.1312059


I. Viktorova et al. 
 

 

DOI: 10.4236/am.2022.1312059 951 Applied Mathematics 
 

( ) ( ), 0
, : e dt

Tf g f t g t tγ
γ

−∞
= ∫                   (2) 

( )( ) ( )( ), 0 0
, : e d e dst st

S sf g f t t g t t−∞ ∞ −= ∫ ∫              (3) 

It is now shown that (2) and (3) are, in fact, inner products. 
Proposition 2.1. The mappings ,, T γ

⋅ ⋅  given by (2) and ,, S s⋅ ⋅  given by (3) 
are defined for all ,f g X∈  and are furthermore inner products over X. 

Proof: Because X contains the continuous functions [ ): 0,f ∞ →   having a 
Laplace transform, the inner product ,, S s⋅ ⋅  is defined for all ,f g X∈ . Also, 
the function fg defined by multiplying f X∈  and g X∈  is continuous and 
of exponential order [10] (follows from the same properties of f and g), and so 
the Laplace transform { }fg  exists, and (2) is simply the Laplace transform 
{ }fg  evaluated at s γ= . Thus, the inner product ,, T γ

⋅ ⋅  is also defined for 
all ,f g X∈ . 

Recall that, for any vector space V, an inner product , :V V⋅ ⋅ × →   satis-
fies the following rules for each , ,u v w V∈  and λ ∈  (e.g., see [11]): 

I1: , ,u v v u=  
I2: , ,u v u vλ λ=  
I3: , , ,u v w u v u w+ = +  
I4: , 0u v ≥ , and , 0 0u u u= ⇒ =  
Property I1 follows readily for ,, T γ

⋅ ⋅  by noting that f and g are real-valued 
functions e tγ−  is real-values, and so the integrand is real-valued. For ,, S s⋅ ⋅ , 
Property I1 follows from (3) by computing 

( )( ) ( )( )
( ) ( )
( ) ( )

, 0 0

,

, e d e d

,

st st
S s

S s

f g f t t g t t

F s G s

G s F s

g f

−∞ ∞ −

=

=

=

=

∫ ∫

 

where F(s) and G(s) denote the Laplace transform of f and g, respectively. 
Properties I2 and I3 follow easily for both ,, T γ

⋅ ⋅  and ,, S s⋅ ⋅  from elemen-
tary properties of integrals. 

Property I4 applies to ,, T γ
⋅ ⋅  because: 1) for each f X∈ , the integrand of 

,, Tf f
γ

 is always nonnegative; and 2) if 0f ≡/ , then by the continuity of f 
over [ )0,∞ , there exist [ )0 0,t ∈ ∞ , 0> , and 0δ >  over which ( )f T δ≥   

for all 0 0,
2 2

T t t ∈ − +  

  . Thus, for each 0γ > , we have  

( )02
,, e 0t

Tf f γ
γ

δ − +≥ >  if 0f ≡/ . From this, the implication  

,, 0 0Tf f f
γ
= ⇒ ≡  follows. 

To show that property I4 applies to ,, S s⋅ ⋅ , first note that ,, 0S sf f ≥  for 
all f X∈  follows from the definition (3), and so it remains to show that 

,, 0 0S sf f f= ⇒ = . This latter claim holds under application of Lerch’s 
theorem (see, e.g., [11] [12]) to the setting where f is continuous. Namely, if 
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,, 0S sf f =  (so that ( ) 0F s ≡ ), then ( )
0

d 0
a

f t t =∫  for all 0a > . The as-
sumed continuity of f on [ )0,∞  and the Fundamental Theorem of Calculus 
imply that 0f ≡ . Thus, I4 holds for ,, S s⋅ ⋅ . Hence, it has been shown that 

,, T γ
⋅ ⋅  and ,, S s⋅ ⋅  are both inner products over X. 

One possible relationship between two different norms a⋅  and b⋅  called 
equivalence is now explored. The equivalence of two norms a⋅  and b⋅  is 
characterized by the existence of 0 u< ≤ < ∞  such that 

a b af f u f≤ ≤  for all f X∈                (4) 

(See, e.g., [11].) Using the inner-product structures defined on X, the 
Cauchy-Schwartz inequality can be used to show a bounding relationship of the 
form , ,S s Tf u f

γ
≤  for all f X∈ , s H∈ , and ( )R sγ <  via the computation 

( ) ( ) ( ) ( ) ( )
222

, ,0 , ,
e d ,e , e ,es t s t s tst

S s TT T
f f t t f t f fγ γ γ

γγ γ

− − − − − −−∞
= = ≤∫   (5) 

( )( ) ( )( )2 2 2

, ,0 0
e d e ds st

S s Tf t t t f u fγγ
γ

− + −−∞ ∞
= ⇒ ≤∫ ∫  (6) 

where ( )
0

1e ds su t
s s

γ

γ
∞ − + −= =

+ −∫ . 

Whereas the upper bound coefficient u is established in (6), the lower bound 
coefficient 0>  necessary to establish the equivalence (4) for each fixed 
s H∈  and ( )0 R sγ< <  is shown not to exist through two counterexamples: 

Counterexample 1: Let f be of the form ( ) e , 0tf t ω ω−= > . Then  

,

1
2Tf

γ ω γ
=

+
 and 

,

1
S sf

sω
=

+
. So ,

2
,

2S s

T

f

f sγ

ω γ
ω

+
≤ =

+
 . Both  

,lim 0Tfω γ→∞ =  and ,lim 0S sfω→∞ = . Furthermore, since  

2

2lim 0
s

ω
ω γ
ω

→∞
+

=
+

, there is no 0>  serving as a lower bound coefficient. 

Counterexample 2: Let f be of the form ( ) ( )sinf t tω= , 0ω > . Then 

2 2,

1 1
2 4Tf

γ

γ
γ γ ω

 
= − + 

 and 
, 2 2S sf

s
ω
ω

=
+

. Now  

,

1lim 0
2Tfω γ γ→∞ = >  and ,lim 0S sfω→∞ = . Thus, ,

,

lim 0S s

T

f

fω
γ

→∞ = , and 

so there is no lower bound 0>  on ,

,

S s

T

f

f
γ

. 

The lack of a lower bound coefficient 0>  is also depicted in Figure 1 and 
Figure 2 for the same two counterexamples. Thus, it is established that due to 
the lack of the lower bound coefficient 0> , the norms ,T γ

⋅  and ,S s⋅  over 
X are not equivalent. 

The bounding relationship (6) between the norms ,T γ
⋅  and ,S s⋅  is also 

described via inclusion relationships between sublevel sets. The sublevel set 
( ), ,L f P δ⋅  is defined by 
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Figure 1. Illustrating the lack of a lower bound coefficient 0>  for the norms 

,T γ
⋅  

( 0.05γ = ) and 
,S s

⋅  ( ( )0.1 1s i= + ) with e , 0tf ω ω−= > . For both plots, each point 

corresponds to the use of a single value of ω , where 2 0.52 , 1, ,50k kω − += =  . 
 

 

Figure 2. Plot of points ( ), ,
,

T S s
f f

γ
 with 0.05γ = , ( )0.1 1s i= + , ( ) ( )sinf t tω= , 

and frequency parameter 0ω >  varying from 192ω −=  to 52ω = . The plotted points 
approaching the origin along the plotted curve correspond to ω  values approaching 
zero, while the plotted points proceeding away from the origin along the same plotted 
curve correspond to ω  values approaching infinity. 
 

( ) ( ){ }, , : : ,L f P p P f pδ δ⋅ = ∈ ⋅ ≤  

for each f, P, and 0δ > . By the existence of the bounding coefficient ,0u u< < ∞ , 
in (6), we have the inclusion 

( )
,

1, , , ,
S s

L f P L f P
u
δ δ⋅ ⋅

  ⊆ 
 

                  (7) 

The sublevel set inclusion (7) provides a sense in which the norm ,S s⋅  pe-
nalizes model-observation discrepancy more leniently than the norm ,T γ

⋅ . 
This leniency is observed, for example, in the plot of Figure 2 where the in-
creasing frequency of ( ) ( )sinf t tω=  due to ω →∞  leads to , 0S sf →   
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while ,

1 0
2T f

γ γ
⋅ → > . 

For application purposes, the preference between the norms ,T γ
⋅  and ,S s⋅  

in formulating the LSP (1) depends on 1) the desired degree of leniency in pena-
lizing imperfect model-observation fit due to the use of parameter p P∈ ; and 
2) the ease and accuracy of evaluating the norms ,T γ

⋅  and ,S s⋅ . Next, in 
Section 3, the material science application of solving LSP (1) motivating the 
contributions of this paper is revisited where the use of each of the two norms 

,T γ
⋅  and ,S s⋅  is evaluated in terms of the above two preference criteria. 

3. Application for Modeling Time Dependent Properties of  
Viscoelastic Materials 

A time-dependent model ( ),m p ⋅  for modeling creep of viscoelastic materials 
under an applied stress load is given by 

( ) ( ) ( )( )

( )( )

1 1

0, : 1
1 1 1

n n

n

t
m p t

E n

αβσ λ
α

− +
∞

=

 −
= + 

Γ − + +    
∑             (8) 

where the stress level σ and Young’s modulus E are determined experimentally, 
and the material-specific kernel parameters ( ), ,α β λ  satisfy 

( ) ( ){ }, , , , : 0 1, ,α β λ α β λ α β λ∈ < < ∈ ∈   

(See [1] [3] [5] for details.) The parameter α  can be found from the first 
term of the infinite series expansion in (8) [3]. Thus, only the model parameters 
β  and λ  need to be determined as an optimal solution ( ),p β λ=  to prob-
lem (1) with ( ){ }: , , ,P p p β λ β λ= = ∈ ∈  . 

The regression function [ ): 0,r ∞ →   is fit to observations based on expe-
riments performed for three types of composites with nanofillers [5]: 

1) Pure polyamide (PA). 
2) Polyamide with ultra-dispersed diamonds (PA + UDD). 
3) Polyamide with carbon nanotube fillers (PA + CNT). 
For each material, the tests with the corresponding three loading levels 0.3σ , 

0.4σ , and 0.5σ  are performed, where the subscript of σ  indicates that the 
stress applied to the materials is 30%, 40%, and 50%, respectively, of the ultimate 
stress, which was taken equivalent to the yielding stress of each of the tested ma-
terials. Using these experimental data, the regression functions ( )r t  used for 
each data set take the form 

( ) 0.1 0.5 0.02
0 1 2 1e e et t tr t c c c c− − −= + + +                 (9) 

where the coefficients , 0,1, 2,3ic i =  are estimated for each data set using stan-
dard linear regression techniques. The resulting regression functions and the 
material-specific vales for 0.3σ , 0.4σ , and 0.5σ  are given in Table 1. 

For each computation, the norm ,T γ
⋅  parameter 0.005γ =  and the norm 

,S s⋅  parameter ( )0.01 1s i= +  are used; furthermore, the experimentally de-
termined parameters α, E, and , 0.3,0.4,0.5i iσ σ= =  associated with ( ),m p t  
are provided in Table 2. 

https://doi.org/10.4236/am.2022.1312059


I. Viktorova et al. 
 

 

DOI: 10.4236/am.2022.1312059 955 Applied Mathematics 
 

Table 1. Regression functions obtained from the creep experiments. 

PA 

loading level ( )r t  

0.3σ  

0.4σ  

0.5σ  

0.1 0.05 0.0225.3626 23.5786e 23.8311e 18.0708et t t− − −− + −  
0.1 0.05 0.0235.1104 40.6847e 47.1203e 32.7179et t t− − −− + −  
0.1 0.05 0.0245.6491 46.1334e 56.2102e 43.5065et t t− − −− + −  

PA + UDD 

loading level ( )r t  

0.3σ  

0.4σ  

0.5σ  

0.1 0.05 0.0225.3102 26.9200e 32.8715e 24.0642et t t− − −− + −  
0.1 0.05 0.0233.0484 31.1413e 33.8989e 26.9547et t t− − −− + −  
0.1 0.05 0.0241.1932 40.9358e 46.6029e 35.6518et t t− − −− + −  

PA + CNT 

loading level ( )r t  

0.3σ  

0.4σ  

0.5σ  

0.1 0.05 0.0221.6266 22.9993e 26.2085e 19.1740et t t− − −− + −  
0.1 0.05 0.0228.5471 33.5503e 36.0275e 24.5412et t t− − −− + −  
0.1 0.05 0.0236.5119 40.9524e 43.0930e 30.5410et t t− − −− + −  

 
Table 2. Setup parameters. 

material γ s α 0.3σ  0.4σ  0.5σ  E 

PA 0.005 0.01 (1 + i) 0.83 16.20 21.60 27.00 955 

PA + UDD 0.01 0.01 (1 + i) 0.83 15.90 21.20 26.50 1008 

PA + CNT 0.01 0.01 (1 + i) 0.83 18.72 24.96 31.20 1320 

 
The optimal parameters ( )* * *,p β λ=  are computed as optimal solutions to 

LSP (1) using the baseline norm ,T γ
⋅ = ⋅  and the alternative norm ,S s⋅ = ⋅ . 

These computations are performed with MapleTM [13]. The computed parameter 
estimates are presented in Table 3 and the resulting wellness-of-fit between the 
parameterized models and experimental observations are illustrated in Figure 3.  

As observed earlier [1] [3], the model ( ),m p t  has an elegant simplification 
under its Laplace transformation 

( ) ( ){ } 1

1, : , 1M p s m p t
E s s α

σ λ
β−

 
= = + + 
           (10) 

Furthermore, each function r with the form (9) has a closed-form Laplace 
transform denoted by ( )R s . Thus, for each s satisfying ( ) 0sℜ > , problem (1) 
takes the following elegant form when ,S s⋅ = ⋅ : 

( ) ( ) 2

2
min ,p P M p s R s∈ −                   (11) 

Solving the LSP (11) is computationally more accurate and less expensive than 
solving the corresponding LSP (1) with ,T γ

⋅ = ⋅ . This is consistent with the  
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Figure 3. Wellness of fit plots using optimal parameter ( )* * *,p β λ=  solutions to problem (1) with 
,T γ

⋅ = ⋅  (left) and 

,S s
⋅ = ⋅  (right). Plots are given based on nine experimental data sets corresponding to three materials each with three loading 

levels. 
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Table 3. Optimal parameter estimates. 

material load 
β λ 

,T γ
⋅  

,S s
⋅  

,T γ
⋅  

,S s
⋅  

PA 

0.3σ  0.061 0.083 654.621 683.217 

0.4σ  −0.011 0.015 570.776 599.720 

0.5σ  −0.050 −0.027 530.258 561.334 

PA + UDD 

0.3σ  0.020 0.002 623.307 598.596 

0.4σ  −0.025 0.011 561.117 608.101 

0.5σ  −0.047 0.009 530.750 600.000 

PA + CNT 

0.3σ  0.011 0.012 585.827 588.197 

0.4σ  −0.075 0.034 481.834 613.805 

0.5σ  −0.126 0.022 433.514 614.225 

 
motivation and observation seen in earlier works [1] [3] [14] associated with the 
use of Laplace transform-based approaches to estimating the optimal model pa-
rameters. 

4. Conclusions 

This paper contributes a mathematical foundation for the comparison between 
time domain least squares parameter estimation problems formulated using the 
norm ,T γ

⋅  and Laplace domain least squares parameter estimation problems 
introduced in [1] [3], applied in [5] [8], and formulated using the alternative 
norm ,S s⋅  as defined in Section 2. A relationship between the norms ,T γ

⋅  
and ,S s⋅  is analyzed in terms of norm equivalence, and in exploring this 
equivalence, the existence of the necessary upper bound coefficient ,0u u< < ∞  
was shown to exist in Section 2 using the two inner product structures (2) and 
(3) defined on X. However, the non-existence of the corresponding lower bound 
coefficient ,0 u< <  , is demonstrated through two counterexamples. From 
the bounding relationship (6), inclusion relationships (7) of sublevel sets follow 
that provides a sense in which the norm ,S s⋅  penalizes certain types of mod-
el-observation deviation more leniently than the norm ,T γ

⋅ . 
The plots of Figure 3 suggest that the solutions ( )* * *,p β λ=  to LSP (1) 

with ,S s⋅ = ⋅  yield improved model-observation fit over the corresponding 
solutions with ,T γ

⋅ = ⋅ . In addition to the computational advantages asso-
ciated with solving (11), the improvement is also attributed to the relatively le-
nient (in a sense derived from the inclusion relationships (7)) penalization of 
certain types of model-observation by ,S s⋅  as compared with ,T γ

⋅ . If the 
types of model-observation deviations that are penalized leniently are subjec-
tively negligible to the model user, then the computation of the optimal solu-
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tions ( )* *,β λ  to LSP (1) with ,S s⋅ = ⋅  is more flexible, and this results in 
subjectively improved model-observation fit as compared with the fit obtained 
with the use of the norm ,T γ

⋅ = ⋅ . 
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The List of the Variables Used in This Paper 

p: parameters in time-domain model 
( ),m p ⋅ : model equation 
( )tε : strain 
( )r t : regression function 

( ),X ⋅ : norm induced topology 
X: space of all condition functions of real variables 
F: Laplace transformation 

,T γ
⋅ : baseline norm in real domain 

,S s⋅ : alternative norm in Laplace complex domain 
V: vector space 
u, v, w: vectors 
λ: constant 
s: complex variable 
t: real variable 
f, g: real valued functions 
F(s), G(s): Laplace transforms of f and g functions 
L: lower bound coefficient 
ω: real parameter > 0 
γ: complex valued parameter 
δ: small real number 
σ: stress level 
E: Young’s modulus 
α, β, λ: material specific kernel parameters 
Γ: Gamma function 
ci: regression function coefficients  
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