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(oRon]

Abstract

In this paper, we deal with the existence of solution for a class of quasilinear
Schrédinger equations with a nonlocal term

—div(gz(u)Vu)+g(u)g’(u)|Vu|2 +V (x)u
:[|x|7”*(KF(U))] Kf (u), x e R?,
where 1 €(0,3), the function K,V eC(R3,R+) and V(X) may be va-

nish at infinity, g is a C' even function with 9'(t)<0 for all t>0,
9(0)

is superlinear but subcritical at infinity in the sense of Hardy-littlewood-

1, tIim g (t) =a, 0<ax<l, and Fis the primitive function of fwhich

Sobolev inequality. By the mountain pass theorem, we prove that the above
equation has a nontrivial solution.

Keywords

Quasilinear Schrédinger Equation, Nontrivial Solution, Variational Method

1. Introduction

In this paper, we consider investigating the existence of a nontrivial solution for

the following generalized quasilinear Schrédinger equation with a nonlocal term
—div(g2 (u)Vu)+ g(u) g’(u)|Vu|Z +V (x)u
= [|x|7” *(KF (u))J Kf (u), xe R®,

where 1 €(0,3), the function V,K eC(R3,R*) may be vanish at infinity,

(1.1)
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f:Ro>R, gisa C! even function with g'(t)SO for all t>0, g(O)zl,
lim_,.. g(t)=a, 0<a<1, when g(u)=1, (1.1) boils down to the so called
nonlinear Choquard or Choquard-Pekar equation

—Au+V (x)u = [|x|72 *(K (y)F (u(y)))} K(x) f(u(x)), (1.2)
Such like equation has several physical origins. The problem

—Au+u :[|x|71*|u|2Ju, (1.3)

appeared at least as early as 1954, in a work by Pekar describing the quantum
mechanics of a polaron at rest [1]. In 1976, Choquard used (1.3) to describe an
electron trapped in its own hole and in a certain approximation to Hartree-Fock
theory of one component plasma [2]. In 1996, Penrose proposed (1.3) as a model
of self-gravitating matter, in a program in which quantum state reduction is un-
derstood as a gravitational phenomenon [3]. In this context, equation of type
(1.3) is usually called the nonlinear Schrédinger-Newton equation. The first in-
vestigations for existence and symmetry of the solutions (1.3) go back to the
works of Lieb [2] and Lions [4]. In [2], by using symmetric decreasing rear-
rangement inequalities, Lieb proved that the ground state solution of equation
(3) is radial and unique up to translations. Lions [4] showed the existence of a
sequence of radially symmetric solutions [5]. Wei and Winter consider strongly
interacting bumps for the Schréding-Newton equation. Ma and Zhao [6] consi-
dered the generalized Choquard equation

—Au+u=[|x|f”*|u|q]|u|q72u(q22), (1.4)

and proved that every positive solution of it is radially symmetric and monotone
decreasing about some fixed point, under the assumption that a certain set of
real numbers, defined in terms of &, g, is nonempty. Under the same assump-
tion, Cingolani, Clapp, and Secchi [7] gave some existence and multiplicity re-
sults in the electromagnetic case and established the regularity and some decay
asymptotically at infinity of the ground states. In [8], Moroz and Van Schaftin-
gen eliminated this restriction and showed the regularity, positivity, and radial
symmetry of the ground states for the optimal range of parameters and derived
decay asymptotically at infinity for them as well. Moreover, they [9] also ob-
tained a similar conclusion under the assumption of Berestycki-Lions type non-
linearity. We point out that the existence, multiplicity, and concentration of such
equations have been established by many authors. We refer the readers to [10]
[11] for the existence of sign-changing solutions, [5] [12] for the existence and
concentration behavior of the semiclassical solutions and [13] for the critical
nonlocal part with respect to the Hardy-Littlewood-Sobolev inequality. For more
details associated with the Choquard equation, please refer to [14] [15] [16] and
the references therein. Li, Teng, Zhang, and Nie [17] investigate the existence of
solutions for the following generalized quasilinear Schrodinger equation with a

nonlocal term
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—div(g2 (u)Vu)+ g(u)g'(u)+|Vu|2 +V (x)u

(1.5)
- ﬂ[|x|f” >l=|u|pJ|u|p72 u,xeR",

and prove that the existence of solution. Li and Wu [18] considered the follow-
ing generalized quasilinear Schrédinger equations with critical or supercritical

growths
—div(g2 (u)Vu)+ g(u)g’(u)+|Vu|2 +V (x)u = f (x,u)+/1|u|p72 uxeR". (1.6)

and prove the existence of nontrivial solutions. Recently, Chen, Zhang and Tang
[19] considered following Kirchhoff-type equation with convolution term and
prove the existence of ground state solutions. Li, Li and Ma [20] proved that
(1.7) has a positive ground state solution by using a monotonicity trick intro-
duced by Jeanjean [21] and a version of global compactness Lemma.

Inspired by the above in this paper, we will consider the existence of nontrivial
solution for the generalized quasilinear Schrodinger equation when V (x) —0

as |X| — 0. The energy functional associated with (1.1)

1 (x)F (u(y))F (u(x))
I(u)=§ R3( |Vu| +V )__.[R3.[R3 |X y|ﬂ !
where F(u I f (s), However, 7is not well defined in Hl(Rg) since the

term I s g (u |Vu| . To overcome this difficulty, we make a change of variable

constructed by Shen and Wang in [22]: V= J. g(t). Then we obtain

%-[Rs |Vv|2 +%IR3V (x)|G—1 (V)|2
_lf | K (y)K (x)F (G (v(y)))F (G (v(x)) (1.7)
2 JR3IR

Xy |
We say u is a solution of (1.1) if
<|,(U),g0>ZJ.RBI:QZ(U)VUV¢)+Q(U)Q, )[Vu* p+V (x)u ]

—Iasz (U(y) (u( )(0 08)

-y

=0,
for all peC; (R3). Let ¢ :ﬁw . By [21] we know that (1.8) is equivalent
u

to

' = Wiy +V (X GV
<J (V)’V/>_IR3 Wy V( )9(671(\/))‘//
—_[ J. K(y)K(x)F(G‘l(v(y))) f (G‘l(v(x)))

x=y["g(6™(v(x))) v

DOI: 10.4236/jamp.2022.1011216

3267 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.1011216

R. Q. You, P. Liao

forall yeC; (RB). Therefore, in order to find the nontrivial solution of (1.1),

it suffices to study the existence of the nontrivial of the following equations
Gy K(Y)K(x)F (6™ (v(y)) (6™ (v(x)))
N 3 ,
g(67(v) ™ [x=y1"g(G™ (v(x)))
To describe our results, we firstly introduce the assumptions on Vand K
(VK)) V,K e(R%,R), V(x),K(x)>0, vxeR*Kel"(R*);
(VK) If {A} =R’ is a sequence of borel sets with |A|<5 for all 1 and

some ¢ >0, then

—AV+V (x) =0, (1.10)

6

. SR . _
!Ln;IAnnBE(o)K “ =0, uniformlyin ne N, z(0,3);

6
Ko#

(VKs) el” (R3);

(VK.) there exists pe(2,6) such that
6

(%)

6-p

Vo4 (x)

For the nonlinearity £ and g, we have the following assumptions:
() feC(R,R) and f(t)=0,vt<0;

K
5 -0 as|x|—>+oo,

. f(t . f(t
(f) hmHO%):O if (VK;) holds; |Imtﬁo%<+w,pe(2,6) if (VK,)
t3 t 6 =
holds;
f(t
(f) lim ﬁ:o;

t>+0 | 15-u
t

(fa) lim @:ﬂo;

t—+00

ft)
&) —

is strictly increasingas t>0;

(fs) there exist T >0 such that tf (t)ZéF(t)>0,if t>T.

Then we have the following results.

Theorem 1.1. Suppose that (VK,)-(VK,) (f;)-(fs). Then the problem (1.1) ex-
ists a nontrivial solution.

Remark 1.1. In this paper, we consider the potential function V is vanishing
at infinity and the nonlocal term f is subcritical. By using mountain pass theo-
rem and dominated theorem, we prove the theorem 1.1. At same time, we say
lemma 3.4 [23] play a great role in this article. Moreover, if someone are inter-
ested in this case, they can consider nonlocal term f s critical and supercritical.

In this paper, we will make use of the following notations:

e The characters C,C,,C,,--- means to inexactly positive constants respec-

tively;
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e “— 7 denotes strong convergence and “— ” denotes weak convergence;
o L (R3 ) ,1< p <40, denotes the Lebesgue space with the norm

1
Jufl.e = (Jslul”)?

2. Preliminary Results
Throughout the paper, we let
H ::{UEHl(R3):_[R3V(x)u2<oo}. (2.1)
then H is a Hilbert space equipped with the inner product
(u,v)= IR3 Vuvv+V (x)uv

and the norm

Joll = ([ 1o +v (o))

We also define weighted Lebesgue space

6
L% (R®)= {u 'R® - R :uis measurable [ K** (x)|ul"™ < oo},

Ko

To begin with, we give some lemmas.
Lemma 2.1. [24] (Hardy-Littlewood-Sobolev inequality) Let t,r >1, and

O<u<N with %-i-::_'-i-’u 2, f(t)e Lt(RS) and L'(RS). There exists a

sharp comstant C =C(t,r,N ,,u) >0, independent of f,h, such that

oo OB

Lemma 2.2. [25] The function g(t), G™ (t),G(t) enjoy the following prop-

erties.

Lcltn

(g1) the function G(t) and G™ (t) are strictly increasing and odd;
() [<[c™(t)|</a forall ter;

(g3) Gf1 /t is nondecreasing for all teR and lim _,G™ )/t =1
t~>oo /t - ]/a
(g4) t? < (t/g ) <t2/a forall teR.
Lemma 2.3. Assume that (f,)-(fs). Then we have the following conditions:
1) For every &> 0, there exists C, >0 satisfies that
8-u - S-u -
[f(t)<elt] = +C ™ and |F(t)|<elt] s +C, |t VteR,if (VK;) holds.
2) Forevery 6>0 and pe (2,6) ,thereis C; >0 satisfies that

9614 5—u pel 6-u .
[F(O)[<SH"s “+C,tf ™ and |F(t)| <ot s +Ci|tf " vteR, if (VKy)
holds.

Proof: By the definition and straightforward calculus.
Lemma 2.4. [26] Assume that there are (VK,)-(VK,) hold. Then, H is com-
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pactly embedded in L° , (R®) for all qe(2,6) if (VK;) holds. If (VKy)

K 6-u

holds, one has H is compactly embedded in L% (]R3 ) ,forall qe (2, 6) .

K6u
Proof: The proof will be made into two parts, firstly we consider the condition
(VK3), and after (VK,). By assuming that (VK;) is true, fixed q 6(2,6) and
given £>0,thereare 0<s,<s and C>0 such that

6 6
K15 220V (0f +f J K () (s)F s <R 22

Hence,
6
[NS o IVIq <eCQ(V)+Cf () K Ve H, (2.3)
where
Q(v) = [V ()M + ],
and

B={XER3 'S, s|v(x)|£51},
If (Vv,) isasequencesuchthat V, —V in H,thereis M, >0 such that
[ (|an|2 +V (x)|vn|2)s M, and fR3|vn|6 <M,, VneN,

which imply that ( A ) is bounded. On the other hand, setting
B, ={xeR:s, <[y, (x)| <5},

the last inequality implies that

S |B| < IBH v, (x)|6 <M,

showing that Sup|A1| <40, Therefore, from (VK,), thereisan r >0 such that
neN

6
ou
jBnnt(o)K “(x )<§ vheN, (2.4)

Now, (2.3) and (2.4) lead to

I Bf(o)

Once that e (2, 6) and K'is a continuous function, it follows from Sobolev

L 6
6

(X)V,[* < £CM, +5f | K®#(x)<(CM,+1)e, VneN, (2.5)

B,NBf (0

embedding
6 6
K7 (Ol =, K OO 29

Combining (2.5) and (2.6)
6 6

lim Kr )|vn|q:jR3K6‘”(x)|v|q, (2.7)

3
n—+o0 IR

which yields
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v, > Vvin L

5
K &-u

, Vg €(2,6).

Now, we will suppose that (VK,) holds. First of all, it is important to observe
that for each x e R® fixed, the function
g(s)=V(x)s* P +s*P, vs>0.

6-p
has CV (x)4

as its minimum value, where

-6 2-p
o522 (57
4 4

6—
CpV(x)Tp <V (x)s*P+s°P, vxeR® and s >0.

Hence,

Combining the last inequality with (VK,), given ¢ e (O,Cp ), there is r>0
large enough, such that

6
K& (s < 2(V (9fsf +[s[*), vs e R and [x( >,

leading to

6
Jaro K I = e (V O +]uf ), vure .
If (Vn) is a sequence such that v, — Vv in A, thereis M; >0 such that

[V (Nl <M, and [ |v,[ <M, vneN,
and so
6
J-Bf(o)Keiﬂ (X)|Vn|p <2eM,, VneN, (2.8)
6

Once that p 6(2,6) and K®* is a continuous function, it follows from
Sobolev embedding

6

OO = Jy o) K GO (2.9)

6
6—

nlj)q]oc J’B, (0) K
From (2.9) and (2.10)
L 8
Jim [ K& ()" = [ Ko (M,
implying that

v, ovin L, (R°),
K 61

finishing the proof of the proposition.

Lemma 2.5. Suppose that f satisties (f)-(fs). Let (vn ) be a sequence such that
V, —V inH. Then
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nILrEOJ'RS‘K(x)F G™ = = s K(x)F(G‘l(v))@,
lim [ ]K(x) f (G‘l(vn))vn = = . K(x)F(G‘1 (v))va,
and
i [ [SOLS DN K0TS 400t
e BT CYC%) I B

0(6(v(x)) |

Proof: We will begin the proof by assuming that (VK;) occurs. From Lemma
2.3,fixed qe(2,6) and given &>0,thereis C >0 such that

|K(x)F(s)|$ <eC(V (X)[s +|s" |+ CKT# (x)[s[, ¥seR,  (2.10)

From Lemma 2.4
6 6

K " [ K b

then thereis r >0 such that

5
_[Bf(o) K6+ x)|vn|q <&, Vnel, (2.11)
Since (V,) isbounded in H, by lemma 2.2 thereis M, >0 such that
x)|G’l (v, N vn)6 SM—Q.
a
Combining the last inequalities with (2.10) and (2.11)
2
.[Bf(o) K(x)F(G™(v, ))‘6 8 <( 5 C+1jg, vneN, (2.12)

Now, if (VK,) holds, repeating the same arguments explored in the proof of

Lemma 2.4, given & >0 small enough, thereis r >0 large enough such that
6

Kg(x)£(~;(v(x)|s|2_p +|s|6_p), vseR\{0}and |x|>r.

Hence
6

K4 ()| ()7
< g[v (x)|F (s)|6% |s,|2’p +|F (s)|6%z |s|6p], vseRand [x>r.
From (£,) and (£), there are C,s,,s, >0 verifying
KEF (IF ()5 < (v (Rf +f ). v <1 and .

where | = {S € R:|s| < s, or |S| > 51}- Thereby, for any ve H, we have the fol-

low estimate
6 6 6

-[Bf(o) r ‘F 71 ))GingCQ( )+CjAﬂB° K*" (X)’
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with

e (v,

Q(67(v)) = [V (0|6 () + s

and
A:{Xe R%:s, S|G’l(v)| < sl}.

Once that (v,) isbounded in ; thereis M; >0 such that

IR3V(X)|G_1(VH)2 s% and |, G‘l(vn)6 S%,
Thus
" L 2Me o
[l K (x)‘F(G’l (v, )] ga—61+CJ‘%nB$(O)K6"’ (%),
where
A, :{XGR3 'S, £|G‘1(vn) Ssl},

Repeating the same arguments used in the proof of Lemma 2.2, it follows that

6
.[Anmsf(o) K®# (x) -0 as |X| — +o,

and so, for nnlarge enough

K% (x)F(G’l (vn))

.[Bf(o)

6
6-4
< (2'\21 +1J5.
a

Using compactness lemma of Strauss [27], Theorem A.I, p. 338, we have

o =J'Br(0)‘K(x)F(G‘1 (v))

6-u
l

m [ oK COF (67(w))

SO

6-—u
3

K(x)F (G’1 (v))

6
6-p J-
R3

nli%rpmJ'R3 K(x)F(G’l(vn))

Similarly, we can prove

nli%rpaoj'R3 K(x) f (G’l (v, ))vn % =fR3 K(x) f (G’1 (v))v%
and
- K (x) (6™ (v(x)))v(x)| [ K (x) £ (G (v(x)))v(x)[*
s TR A C)) R

Lemma 2.6. Assume the assumptions (VK,)-(VK,) and (f,)-(fs) hold. Then ]
satisfies the following conditions:
i) There exist a,p>0 J(v)2a if |v|=p.
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ii) There existan ee H with ||E|| > p suchthat J (e) <0.
Proof: (i) If (VK;) hold, by Lemma 2.3 and (f;) and (f;), we have

2= [V 2 [V ()6 )
1o KOKO)F(S™ () (6™ (v(0))
J.]RS-[]R:" |x— y|”
1, 2 & 12-2p C. Wi 2/1
2 oM - M -

12-2 12-2
“ ql2-2u
a 3

(2.13)

Since £ €(0,3), we can choose some p>0,a>0 such that
J(v)=a >0 with |v]|= p.

If (VK4) holds, by the same way, we also have the same result.
(ii) First we note that J (0) =0. Furthermore, by Lemma 2.2, for fixed
veH\{0} and t>0,wehave

20) =2V -2 [V (1)) ()]
(1 KOK()F(™ (v(y))F (6™ (v(x)
IR3J.R3 |x— y|/1
XK (y)F (6 (v(y)F(6 (w(x)))

x=y[*

(2.14)

2a2 " " __IR3IR3

From Lemma 2.3 and (fs), there exist C,,C, >0 such that
2
Clt]a —C, < F(t).
By (f1) and (fs), we have F (t) >0, then

(o) :;—;nwr ST it (G;X(t_viff)) et
.| elewi) -, |
|X y[*
< - IRSJRS (|l -, |[elmeof -, .
2a2” -3 lafox (c e () Jv(y |a—C102t§(|v(x)|§+|V(y)|§j+CZZJ

L koo e oo oo

-CC, |t|% (|v(x)|a +|v(y)|§J+|t|z CZZJ — —00, t —> 400,

[cl Gt

=T

Thus, we take e=t)v for some t, >0, and (ii) holds.

By Lemma 2.6 and Ambrosetti-Rabinowitz mountain pass theorem [28], there
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exists a (PS)C sequence V, c H
J(v,)—>cand J'(v,)—>0, (2.16)

at the minimax level

=inf maxJ (»(t)),

el te[01]

where I'=ye{C([0,1],H):7(0)=0,3((1))<0}.
Lemma 2.7. The sequence (V,) given in(2.16) is bounded.
Proof: By (2.16) and Lemma 2.3, we have

c+1+0, (D)|v,[|2 I (v, —%(J’(vn),vn>
(———]IR3|VV| + R3—v )G (v
K(x)K(y>F<G1(vn<y>))[f<e1(vn<x>>)e1<vn<x>)—§F(Gl(vn<x>))

x-y"

2

a
+Z.[]R3.‘.R3
1
L

which implies that {v,} isbounded in A.

Proof of Theorem 1.1: By Lemma 2.7, {V,} is bounded in A. Then, passing
to a subsequence, V,—V in H, V,—>V in L (RS) for qe [2,6) ,
V,(x) > v(x) aein R

By (1.9) and Fatou’s Lemma, we obtain that

0, (1):<J’(vn),v>

G G (vy)v
_J' Vv Vv+j g = Vn))
L] K(y)K(X)F(G™(v,)) F(G™(v, )V (2.18)
e |X yl” (G (v))
Sy F(G* () F(6™ (),
" " JRSIRS | |;, g(G 1(Vn)) V.
and
0, (1):<J’(vn) vn>
=J'R3anVv +[.sV (x) ( (YE\)/:/) (2.19)
(o KOK(9F(e? Vn))f(Gl ()% ()
IR3IR3 |X y|/x (G 1 ) '

Next, we prove that

AmJR31R3K<y>K<X>F<G o >>>f(el<vn Do

. K(y)K
= ,I]I_TOJ-RJM
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K(y)K(x)F (G (v(y))) f (67 (v(x)))v(x)
“lel [x=y"9 (6™ (v(%))) o
First we prove the first equality in (2.19),

. K(y)K()F (6™ (v, (%)) (67 (va (x)))va (¥)

o x=y"9(G™ (v (x))

CKY)KMF(G™ (v(y) F(6™ (v(x))v(x)

=y (67 (v()
=IR3IR3 K(y)K(x)F(G’l(vn (y

2(%))) (2.21)

(
e K(y)K(x)F(G™(v(y))) (G (v(x)))v(x) 1

Next, we prove B, -0 as n— o, since

L K(Y)K()(F (6™ (v (%)) =F (6™ (v(y)) £ (6™ (v(x)v(x)
o x-y"9(6 (% (x) |

B =

6-u

<C, [ L[ K(F (6 (% (1) -F (6 (v(v)))) 66"]6 (2.22)

6 6
6-u

i L& (o0& 00)

x{J'R3‘K(x) (G (v(x)))v(x)

It follows from Lemma 2.5 that

6—u
6 6
6-u — O
L
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Thus

B, >0,asn— oo,

Similarly
A —0,C —0, asn— oo,

Therefore, we have that

|imj I K(y)K(x ( x))f(G1 (v, ) L (X)

b ) -

L K(y)K(x)F(G™(v ()» (G (v(x)))v(x ) '
e [x=y" (6™ (v(x)))

Next, we say V=0 isimpossible. We know J (Vn ) — ¢ >0, then we have
1 1 _ 2
J(v,) ZE-[R3|VV"|2 +E'[R3V (x)|G (v, )|

1 KWKMF(G (M ()6 (% ()
ZIR3.[R3

x=y[*
1 2 1 1 2
_>C~§~[R3|VV”| +§IR3V(X)|G (vn)|

1 KOKOF(S ()F (6 (v(x)
—>c+2LR3J‘R3 :

=y’
Let nlarge enough, we have
J'R3 Vv, |2 + IR3V (x)|G’1 (v, )|
¢ 1 o KKEF(G (v(y)F(6 (v(x)
e 2 + 4 .[R3IR3 '

=yl
By (2.19) and Lemma 2.2
o[, KOREIR(E ) (6 () )
§ =" 9 (67 (v(x))
= V.VV_ + X G~ (vn)vy
_IR3V n V'V .[]R3V( )g(Gfl(Vn))
>I [V, | 2+.[ V(x)GH(v, )’
¢ 1 )F(G (v(y)F (62 (v(x)
JR3IR3 |x—y|‘ !
which contradict with v=0. Next, we prove <J'(v),(p>:0 , VpeCy (RS).

since

2
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+ J.]R?’J.]RS & (y) “ (X) (/)(X)[ : (Gil (Vn ))

x=y["

We prove it by two parts

St et
. )[g«s*(vn)) TG )}’
(

<[V (x)67 (v, )l + v ()& (v)]le] (2.24)
< ‘V (x)(G’1 (v,)’ +1)‘|¢|+‘V (x)(G (v)’ +1)“¢7|
< ’V (x)(v2 +1) |¢7|+‘V (x)(v* +1)“go|;
and
KKK (FIEHW) (6 (w) F(e*W)f(e” <v>)]‘
R e 667 1)
< Jualis = |(Xy_)—:|£ ) P(X)F(G™(v,)) F (G (v)) (2.25)
Ll %q)(x) F(6* W) (62 W),
By Lemma 2.5 and Lemma 3.4 [23], we have
J'R3JR3 %q)(X)F(Gl (Vn)) f (Gfl (vn))
UKD >
- J.RSJ‘]RS W¢(X) F (G (V)) f (G (V)) '
By the (2.24)-(2.26), Lemma 2.5, and the Lemma 3.4 [28], we have
|<J’(vn)—J’(v),¢)>| —~0,VpeCy (R);
Then
J'(v)=0. (2.27)

Hence, vis a nontrivial solution of Equation (1.1).
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