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Abstract 
In this article, the lifetime data subjecting to right random censoring is con-
sidered. Nonparametric estimation of the distribution function based on the 
conception of presmoothed estimation of relative-risk function and the prop-
erties of the estimator by using methods of numerical modeling are discussed. 
In the model under consideration, the estimates were compared using nu-
merical methods to determine which of the estimates is actually better. 
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1. Introduction 

Censored data occur in survival analysis, bio-medical trials, industrial experi-
ments. There are several schemas of censoring (from the right, left, both sides, 
mixed with competing risks and others). However, in statistical literature right 
random censoring is wide spread, in so far as it was easily described from the 
methodological point of view. Here we consider also this kind of censorship in 
order to compare our results with others. 

Let 1 2, ,X X   and 1 2, ,Y Y   be two independent sequences of indepen-
dent and identically distributed (i.i.d.) random variables (r.v.-s) with common 
unknown continuous distribution functions (d.f.-s) F and G, respectively. Let 
the jX  be censored on the right by jY , so that the observations available for 
us at the n-th stage consist of the sample ( ) ( ){ }, ,1n

j jC Z j nδ= ≤ ≤ , where 
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( )min ,j j jZ X Y=  and ( )j j jI X Yδ = ≤  with ( )I A  meaning the indicator of 
the event A. The main problem consists of a non-parametrical estimating of d.f. 
F with nuisance d.f. G based on the censored sample ( )nC , where the number of 
observed jX s− , 1n nν δ δ= + +  is random. 

Kaplan and Meier [1] were the first to suggest the product-limit (PL) estima-
tor PL

nF  of F defined as 

( ) ( ){ }
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where ( ) ( )1 nZ Z≤ ≤  are the order statistics of Z-sample { },1jZ j n≤ ≤  and 

( ){ },1j j nδ ≤ ≤  the sequence of indicators adjunct to the ordered Z-sample. 
There are different versions of PL-estimators. However, those do not coincide, if 
the largest jZ  is a censoring time. There is an enormous set of works on inves-
tigating several properties of PL-estimators and their application on statistical 
problems, specially in the case of right random censorship. However, PL

nF  is 
not a unique estimator of d.f. F. Abdushukurov [2] [3] proposed another esti-
mator of F, of relative-risk power type: 
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where ( ) ( ) ( )1
1

1 , ;n
n jjH t I Z t t

n =
= ≤ ∈ ≡ −∞ +∞∑ 

 is an empirical estimator of 

d.f. ( ) ( )( ) ( )( ) ( )1 1 1jP Z t F t G t H t≤ = − − − ≡  and ( ) ( )( ) ( )1
1n n nR t t t

−
= Λ Λ  

is an estimator of relative-risk function ( ) ( )( ) ( )1 1
1 ,R t t t t

−
= Λ Λ ∈ . Here cu-

mulative hazard functions (c.h.f.-s) 0,Λ Λ  and 1Λ  corresponding to d.f.-s H, 
G and F defined as 
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with subdistribution functions ( ) ( ) ( ) 1
0 1 ,H t H t H t t+ = ∈ , 
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The corresponding estimators of c.h.f.-s (3) are 

( ) ( )
( ) ( ) ( )0 1

d
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1
t n

n n n
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H u−∞
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are empirical counterparts of ( ) , 0,1kH t k =  with  
( ) ( ) ( ) 1

0 1 ,n n nH t H t H t t+ = ∈ . 
In [2] [3] [4] it was shown that both estimators (1) and (2) have similar 

asymptotic properties tending to the same limiting Gaussian process. However, 
the relative-risk power estimator (2) has some small-sample advantages with re-
spect to PL-estimator (1). For example, it is not sensitive to censoring in last ob-
served point ( )nZ , since ( )( ) 1RR

n nF Z =  and it is identifiable with the model: 
( )( ) ( )( ) ( )1 1 1RR RR

n n nF t G t H t− − = − , 1n ≥ , 1t∈ , where  
( ) ( )( ) ( )1

1 1 nR tRR
n nG t H t

−
= − −  is a corresponding estimator of d.f. G(t). In [4] it 

was proposed several extended versions of estimator (2) in generalized models of 
incomplete observations mixed with competing risks. These estimators were also 
extensively studied in some statistical problems. It is not difficult to observe that 
estimator (2) is a natural extension of well-know ACL-(Abdushukurov-Cheng-Lin) 
estimator of F in simple Proportional Hazards Model (PHM): 

( ) ( )( ) 11 1 , ,npACL
n nF t H t t= − − ∈  

where n
np

n
ν

=  is an estimator of probability ( )1jp P δ= = , which is value of 

the constant relative-risk function ( )R t p≡  (so far as in PHM,  

( ) ( ) 1
1 ,t p t tΛ = Λ ∈ ). Note that ACL

nF  was independently proposed and stu-
died by Abdushukurov [5] and Chen, Lin [6] (for more information, see also 
Csörgő [7]). This estimator was studied, extended and used by many other au-
thors up a present. The main property of PHM is its characterization by indepen-
dence of subsamples { }1, , nZ Z  and { }1, , nδ δ . This property is equivalent  

to relation ( ) ( )( ) 11 1 ,G t F t t
β

− = − ∈  for some positive β . In PHM, 

1
1

p
β

=
+

 and therefore β  is a censoring parameter. Estimator ACL
nF  in  

PHM is asymptotically efficient with respect to PL
nF . This advantage of the es-

timator is well preserved for plug-in estimators of many functionals (see [2] [5] 
[7]). That is why, in this framework, the conditional probability that datum is 
not censored given its observed value 

( ) ( ) 11 , ,j j j jp t P Z t E Z t tδ δ = = = = = ∈              (4) 

is a very important function, which in PHM is constant ( ) 11 ,
1

p t t
β

= ∈
+

 . 

Moreover, the key role of probability (4) takes part in expressing c.h.f. 1Λ  via 
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Λ  as 

( ) ( ) ( ) 1
1 d , ,

t
t p u u t

−∞
Λ = Λ ∈∫   

and, therefore, a relative-risk function given as 

( ) ( )( ) ( ) ( )1 1d , .
t

R t t p u u t
−

−∞
= Λ Λ ∈∫   

Probability (4) is a regression of jδ  on jZ . Hence, it can be estimated by 
some regression statistics. We have used the following nonparametric regression 
estimator of Nadaraya [8] and Watson [9]: 
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∑ ∑         (5) 

where the kernel ( )k ⋅  is a given probability density function and  
( ){ }, 1h h n n= ≥  is a bandwith sequence such that: 0,h n↓ →∞ . In case of 

dependence of probability (4) on unknown parameters, it may be estimated pa-
rametrically (see, Dikta [10] in this context). Cao et al. [11] proposed following 
presmoothed PL-estimator of d.f. F by replacing the censoring indicators ( )jδ  
in the expression of PL-estimator (1) by the estimator (5) at the observed data 
points: 
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Some asymptotic properties of estimator (6) were investigated in [11] [12]. 
Taking into account some advantages of estimator (2) with respect to (1), we 
propose a new presmoothed relative-risk power (PRRP) estimator: 

( ) ( )( ) ( )

( )

( )

( ) ( )

( )

1

1

1 1

0, ,

1 , , 1 1,

1, ,

p
n

p
n

R tPR
n n

R t

j j

n

F t H t

t Z

n j Z t Z j n
n

t Z

+

= − −

<

 −  = − ≤ < ≤ ≤ −  

 
 ≥


          (7) 

were 
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1 d , ,
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n n n n n nR t t t t p u u t
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−∞
= Λ Λ = Λ Λ ∈∫   

is a partially presmoothed analogue of estimator ( )nR t . For probability mass 
function (4) smooth estimator (5) is used in formula for c.h.f. ( )1 tΛ . But the es-
timator (7) is not smooth. We can see that estimator (7) is also well defined in 
whole line without any conditions on censorship. 

2. Asymptotic Properties of PRRP Estimator 

Let’s denote ( ) ( ) ( )( ) ( )1 2 1 22 logr n h n nh n n
−

= + . In order to investigate the prop-
erties of estimator (7) we need the following conditions: 

(C1) ( ) ( ) ( ) ( ){ }, , : , 0,1F G j jF G K F G N N P X Y∈ = ≠ ∅ ≤ ∈ , where  
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( ){ }: 0 1FN t F t= < <  and ( ){ }: 0 1GN t G t= < < ; 

(C2) Numbers ,α β  and γ  are such that ( ) ( ){ } ( )min ,1 0,1H Hα β γ− ≥ , 

( ){ }sup : 0H t H tα τ> = =  and ( ){ }inf : 1HT t H tβ < = = , [ ],α β ≠ ∅ ; 

(C3) For all 1n ≥  there takes place ( )0 1nP nν< < = ; 
(C4) k is a symmetric, twice continuously differentiable and bounded varia-

tion density function with compact support; 
(C5) Density ( ) ( )q t H t′=  exists, is four times continuously differentiable at 
[ ],t α β∈  and ( )sup 0

t
q t

α β≤ ≤
> ; 

(C6) ( )p t  is four times continuously differentiable at [ ],t α β∈ ; 
(C7) ( )1n h nε− ⋅ → ∞  for some 0ε > , ( )1n h nλ∞
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In the next theorem, we will show that PRRP estimator can be approximated 
by summ of i.i.d. random functions on t with the rate for the remainder term 
tending to zero at n →∞  almost surely. 

Theorem 1. If the conditions (C1)-(C7) are fulfilled, then there holds  
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. . 2 logsup max log ,

a s

n
t

nQ t r n n
nα β≤ ≤

  = Ο   
  

, where  

( ) ( ) ( ) ( )1 2 3
1

1 ; ; ; ,
n

n i i i i
i

t t Z t Z t Z
n
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The following Lemmas allow us to prove Theorem 1. 
Lemma 1. (Corollary from lemma 3.2 in [12]) Assume that the conditions 

(C1)-(C7) are fulfilled. Then following estimate holds 

( ) ( ) ( )( )
. .

1 1sup log .
a s

p
n

t
t t r n n

α β≤ ≤
Λ −Λ = Ο                (9) 

Lemma 2. (Theorem 3.4 in [12]). Assume that the conditions (C1)-(C7) are 
fulfilled. Then for [ ],t α β∈  it is true that  

( ) ( ) ( ) ( )( )
. .

2
1 1 .

a s
p
n nt t t r nΛ −Λ = Ω +Ο                (10) 

Lemma 3. (Dworetzky-Kiefer-Wolfowitz inequality with tight constant 
2d =  from [13]). For all 1n ≥ , some 0γ >  and ( )( )( )1 211 2 logn nε γ −= +  

the following estimate holds 
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Lemma 4. (Lemma on page 53 [14]). For 0γ >  there is true following esti-
mate 
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(12) 

where ( )γΑ = Α  and Β  are some positive constants. 
Lemma 5. 1) If conditions (C1)-(C3)

 
are fulfilled, then there hold estimates 

a) 
( )
( )

1 2. . logsup 1
a s

t n

t n
t nα β≤ ≤

 Λ  − = Ο   Λ   
; 

b) 
( )
( ) ( )

1 2. .
1 logsup

a s

t n

t nR t
t nα β≤ ≤

 Λ  − = Ο   Λ   
; 

2) If the conditions (C4)-(C7) are additionally required fulfilled, then the fol-
lowing estimate is also valid  

c) ( ) ( ) ( )
1 2. . logsup max log ,

a s
P
n

t

nR t R t r n n
nα β≤ ≤

     − = Ο        
. 

Proof of Lemma 5. Observe that 
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where we have used Lemma 1 and the estimate (13). Lemma 5 is proved. 
Proof of Theorem 1. By two-term Taylor expansion for difference  
( ) ( )PR

nF t F t−  we obtain  
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Now we will show that in (15) the first summand is main term and the sum of 
other two terms tends (at n →∞ ) to zero. Consider first term, which can be 
decomposed as  
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For other two terms of (15) we have 
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( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )

1

1

1

1

log 1 log 1

log 1 log 1

1

.

n n
n

p
n n n

n p
n

p
n n n n

t
t t H t H t

t

R t t t H t H t

t
t t

t

R t A t B t C t

Λ
 − Λ −Λ + − − + − Λ

  = − Λ −Λ + − − + −  
 Λ − Λ −Λ −  Λ  

= + +  

    (18) 

Hence by (9) and (13), we obtain  
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( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( )( )

1

1 1 1

. . 3 2 1 2

sup sup

sup sup sup

log .

p
n n n

t t

p p
n n n

t t t

a s

R t C t C t

t t t t t

r n n n

α β α β

α β α β α β

≤ ≤ ≤ ≤

−

≤ ≤ ≤ ≤ ≤ ≤

−

≤

≤ Λ Λ −Λ Λ −Λ

= Ο

        (19) 

Now by simple algebra and integrating by parts for ( )n tΑ  and taking into 
account Taylor exponsion for ( )n tΒ  we get chain of equalities 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( )
( )

( )
( )

( ) ( )
( )

( ) ( )( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

2

2

log 1 log 1

d d 1
1 1 1 2

d d d d
1 1 1 1

1
1 2

n n n n

t t
nn n

n n

t t t t
n n n

n n n

nn

t t t t H t H t

H t H tH u H u H t H t
H u H u H t t

H u H u H u H u
H u H u H u H u

HH t H t
H t

θ−∞ −∞

−∞ −∞ −∞ −∞

 Α +Β = − Λ −Λ + − − + − 
 −  − = − − + + 

− − − −     
    = − − − −   

− − − − −       

−
+ + ⋅

−

∫ ∫

∫ ∫ ∫ ∫

( ) ( )( )
( )

2

2
n

t H t
tθ

 −  
  

 

( ) ( )( ) ( )
( )( ) ( )( )

( ) ( )
( )

( ) ( )( ) ( )
( )( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )
( )( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

2

1 2

2

1

d
11 1

d d
1 11

1

d d
1 1 1

d
1 1

t
n n

n

t t
n n n

n

n
n n

t t
n n

n

t
n n

n

H u H u H u H t H t
H tH u H u

H u H u H u H u H u H u H u
H u H uH u

H u H u
D t D t

H u

H u H u H u H u H u H u
H u H u H u

H u H u H u H u
D

H u H u

−∞

−∞ −∞

−∞ −∞

−∞

  − −= − +
−− − 

− − −
− +

− −−

 − − + +  −   
− −

= − +
− − −

− −
+ +

− −

∫

∫ ∫

∫ ∫

∫ ( ) ( )2 ,n nt D t+

   (20) 

where  

( )
( ) ( )( ) ( )

( )( ) ( )( )1

d
1 1

t
n n n

n
n n

H u H u H u
D t

H u H u−∞

− −
=

− − −∫ , ( )
( ) ( )( )

( )

2

2 2

1
2

n
n

n

H t H t
D t

tθ

−
= , 

( ) ( ) ( ){ } ( ) ( ){ }min , ,max , .n n nt H t H t H t H tθ  ∈    

Hence, using (11) we have  

( ) ( )
. . . .

1 2
1 logsup , sup .

a s a s

n n
t t

nD t D t
n nα β α β≤ ≤ ≤ ≤

   = Ο = Ο   
   

          (21) 

Consider equality  

( ) ( )
( ) ( )
( )( ) ( )( )

1 1
1 1 1 1

n

n n

H u H u
H u H u H u H u

−
= +

− − − −
           (22) 

and its integral form 
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( ) ( )( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )
( )( )

( ) ( )( ) ( )
( )( ) ( )( )

2

2 2

d
1 1

d d
.

1 1 1

t
n

n

t t
n n

n

H u H u H u
H u H u

H u H u H u H u H u H u

H u H u H u

−∞

−∞ −∞

−

− −

− −
= +

− − −

∫

∫ ∫
     (23) 

Using (22) and (23) in the third and first integrals in (20) and taking into ac-
count also (21) we obtain  

( ) ( )
( ) ( )( ) ( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )( )

2 2
. .

2

2

d d
1 11 1

d log .
1

n n

t ta s n n n

nn

t
n n

t t

H u H u H u H u H u H u H u
H u H uH u H u

H u H u H u H u n
nH u

−∞ −∞

−∞

Α +Β

− − −
= − +

− −− −

− −  + +Ο 
 −

∫ ∫

∫

 (24) 

Application of estimator (11) to the first and second integrals and (12) to the 
third integral in (24) gives that  

( ) ( )( ) ( )
( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

2

2

21 . .2

d
sup

1 1

log1 1 sup ,

t
n

t
n

a s

n n
t

H u H u H u

H u H u

nH H H u H u
n

α β

β β

≤ ≤ −∞

−

−∞< <∞

−
−

− −

   ≤ − − − = Ο         

∫
 (25) 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

2

2 . .1

d
sup

1 1

log2 1 1 sup ,

t
n n

t n

a s

n n
t

H u H u H u H u
H u H u

nH H H u H u
n

α β

β β

≤ ≤ −∞

−

−∞< <∞

− −

− −

   ≤ − − − = Ο       

∫
 (26) 

( ) ( )( ) ( ) ( )( )
( )( )

. .

2

d logsup .
1

t a sn n

t

H u H u H u H u n
nH uα β≤ ≤ −∞

− −  = Ο 
 −

∫        (27) 

Thus, adding (18), (19) and (24)-(27), we derive  

( ) ( ) ( ) ( )

( ) ( )
. . 3 2 1 2

sup

logmax log

p
n n n n

t

a s

R t A t B t C t

nr n n n
n

α β≤ ≤

−

+ +

  = Ο ⋅ ⋅  
  

 

Then, by virtue of (9) and (16), from (15) we have  

( ) ( )
. . logsup max log ,

a s

n
t

nM t r n n
nα β≤ ≤

  = Ο   
  

 

and, consequently, 

( ) ( ) ( )
22 . . logsup sup max log , .

a s

n n
t t

nL t M t r n n
nα β α β≤ ≤ ≤ ≤

      ≤ = Ο           
   (28) 

Finally, the desired result (8) follows, from (15)-(17) and (28). The proof is 
completed. 
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Now as a consequence the strong uniform consistency of PRRP estimator can 
be obtained.  

Theorem 2. Let the assumtions of Theorem 1 are fulfilled. Then at n →∞  
there holds 

( ) ( ) ( )
1 2. . logsup max log , .

a s
PR

n
t

nF t F t r n n
nα β≤ ≤

     − = Ο        
        (29) 

Proof of Theorem 2. Using inequality log logu v u v− ≤ − , 0 , 1u v< ≤ , we 
have a chain of following relations: 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

( )

1 1

1
. . 2

sup sup 1 log 1

sup log 1 log 1

1 sup 1 sup

logmax log , ,

PR PR
n n

t t

P
n n

t

P
n n

t t

a s

F t F t F t F t

R t H t R t H t

H R t R t H H t H t

nr n n
n

α β α β

α β

α β α β
β β

≤ ≤ ≤ ≤

≤ ≤

− −

≤ ≤ ≤ ≤

− ≤ − − + −

= − − + −

 ≤ − − + − −  
  

   = Ο         

 

where the last equality is obtained by using of Lemmas 3 and 5 (candition (c)) 
and this completes the proof of Theorem 2. 

The approximating sequence of normalized sum of random functions ( )n tΩ  
in Theorem 1is the same that for presmoothed PL-estimator (6). Therefore, from 
theorem 3.7 in [12] follows the asymptotic normality of PRRP estimator, under 
taking into account the representation (8). 

Theorem 3. Let the assumptions of Theorem 1 be fulfilled and  
(C8) ( )( ) 62 lognh n n − → ∞ , ( )( )48 log 0nh n n →  and ( )( )53 log 0h n n →  

as n →∞  for any [ ],t α β∈ .  

Then there hold 
1) If ( )4 0nh n → , then ( ) ( )( ) ( )( )1 2 20,dPR

nn F t F t N tσ− → ,  
2) If ( )4 4nh n C→ , then ( ) ( )( ) ( ) ( )( )1 2 2,dPR

nn F t F t N b t tσ− → ,  

where  

( ) ( )( ) ( ) ( )2 1 ,b t C F t t d kα= −
 

( ) ( )2 2 d ,d k u k u u
∞

−∞

= ∫  

( )
( ) ( ) ( ) ( )

( )

1 d
2 ,

1

t p u q u p u q u u
t

H u
α

−∞

 ′′ ′ ′+ 
 =

−∫
 

( ) ( )( ) ( )22 1 ,t F t tσ γ= −  

( ) ( ) ( ) ( ) ( )
( )( )2d , .

1

t p t q t
t u u t

H t
γ µ µ

−∞

= =
−

∫  
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3. Numerical Study of Estimators 

In this section, we investigate the above estimates using numerical methods. By 
python programming language we are preparing a high-quality sample. We se-
lect ( ) ( ), 1 e , 1.79 0

ctF t c c t−= − = ≥  and get a sample of volume 500n = . This 
sample is censored from the right with r.v.-s having a d.f. ( ) ( )1 e 0tG t t−= − ≥ . 
The resulting sample has a degree of censorship 47%. We will study the above 
estimates on the resulting sample. 

The red line in the figure shows the theoretical d.f. ( ),F t c  and the green line 
shows the Kaplan-Meier estimate (Figure 1). One disadvantage of this estimate 
is that it may not matter at this endpoint. 

Now we draw the evaluation graph (Figure 2) of estimator proposed by Ab-
dushukurov (2). In the figure, the red line shows the theoretical d.f., the blue line 
shows Abdushukurov’s estimate. It can be seen from the graphs drawn that both 
estimates are very good. But in practice, it is difficult for us to see on the graph 
which score is better. Therefore, we study the sum  

( ) ( )( )21
1

n
n i ii F Z F Z−

=
−∑ . Let’s make the appropriate tables for it. 

From the table (Table 1) above, it can be concluded that the estimate (2) 
proposed by Abdushukurov is closer to the d.f. ( ),F t c . 

Now we draw the estimates (6) (Figure 3) and (7) (Figure 4). 
As can be seen from the graph, despite the high level of censorship, both esti-

mates are very close to the theoretical d.f. The table below shows that the price 
actually depends on the selected bandwith sequence. 

From the table (Table 2) above, we can conclude that the PR
nF -estimator is 

better than p
nF -estimator. 

 

 
Figure 1. PL

nF -Estimator (Kaplan-Meier). 
 

Table 1. Comparison of ( )PL
nF t -estimate with ( )RR

nF t -estimate. 

Sum ( ) ( )( )21

1

n PL
n i ii

F Z F Z−

=
−∑  ( ) ( )( )21

1

n RR
n i ii

F Z F Z−

=
−∑  Relative 

Value 0.204858 0.123901 0.604814 
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Figure 2. RR
nF -Estimator (Abdushukurov). 

 

 

Figure 3. p
nF -Estimator. 

 

 
Figure 4. PR

nF -Estimator. 
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Table 2. Comparison of ( )p
nF t -estimate with ( )PR

nF t -estimate. 

Bandwith ( ) ( )( )2

1

n p
n i ii

F Z F Z
=

−∑  ( ) ( )( )2

1

n PR
n i ii

F Z F Z
=

−∑  Relative 

( ) 1h n
n

=  0.294402 0.277757 0.943462 

( ) 3

1h n
n

=  0.23152 0.210734 0.910219 

( ) 5

1h n
n

=  0.181307 0.178650 0.985345 
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