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Abstract 
Excess minority carrier’s diffusion equation in the base of monofaciale silicon 
solar cell under frequency modulation of monochromatic illumination is re-
solved. Using conditions at the base limits involving recombination velocities 
Sf and Sb, respectively at the junction (n+/p) and back surface (p+/p), the AC 
expression of the excess minority carriers’ density δ (T, ω) is determined. The 
AC density of photocurrent Jph (T, ω) is represented versus recombination 
velocity at the junction for different values of the temperature. The expres-
sion of the AC back surface recombination velocity Sb of minority carriers is 
deduced depending on the frequency of modulation, temperature, the elec-
tronic parameters (D (ω)) and the thickness of the base. Bode and Nyquist 
diagrams are used to analyze it. 
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1. Introduction 

To improve (or control) the quality (performance) of solar cells [1] [2], especial-
ly silicon, the recombination parameters of minority carriers, in the bulk (vo-
lume) and on interfaces, are the subject of theoretical and experimental investi-
gations [3] [4] [5]. 

The determination of the recombination in the bulk (lifetime) of minority 
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carriers in the solar cell base [6] [7] is influenced by: 
1) The theoretical 1D or 3D study model (crystallography, grain size and thick-

ness of different regions) [8] [9] [10]. 
2) Recombination at the interfaces, i.e., at the front of the n+ emitter (Se), at 

junction n+/p or SCR (Sf), on the rear side p/p+ (Sb) of the base [11] [12] [13] [14] 
[15]. 

3) The solar cell’s operating regime under dark or illumination, can be: steady 
state [16] [17], transient [18] [19] or frequency dynamics [20] [21].  

4) The equivalent electric model associated with the solar cell, according to 
the operating regime [22] [23]. 

5) External conditions applied to solar cell i.e.: mono or polychromatic illu-
mination [24], temperature (T) [25], electromagnetic field (E, B) [26], irradia-
tion flow (ϕp) by charged particles [27].  

It is therefore clear that it is important to carry out the investigations, hig-
hlighting, the physical mechanisms of recombination (volume or surface) in each 
case, and in each region of the solar cell, taking into account the geometric pa-
rameters (thickness), in order to dissociate their contribution [28] [29] [30] [31]. 

Some studies have focused on both the lifetime and the AC back surface recom-
bination velocity of excess minority carriers in the base of the silicon solar cell, in 
order to dissociate their effects under different external conditions [32] [33].  

Our study brings, an exploration by the diagrams of Bode and Nyquist, the 
AC back surface recombination velocity of minority carriers’ expression [34] 
[35], deduced on a silicon solar cell maintained at temperature (T), illuminated 
by the front (n+/p) of the base of thickness (H), by a modulated monochromatic 
light of short wavelength (α(λ)). 

2. Theoretical Modele  

The structure of the n+-p-p+ silicon solar cell under front monochromatic illu-
mination [11] [36] in frequency modulation, is given by Figure 1. 

The excess minority carriers’ density ( ),x tδ  generated in the base of the so-
lar cell at T temperature and under modulated monochromatic illumination, 
obeys to the continuity equation [37] [38] [39] given as: 

( ) ( ) ( ) ( ) ( )2

2

, , ,
, , ,

x t x t x t
D T G x t

tx
∂ ∂

× − = − +
∂∂

δ δ δ
ω ω

τ
          (1) 

The excess minority carriers’ density expression in the (p) base, can be written, 
according to the space coordinates (x) and the time t, as: 

( ) ( ), e j tx t x −= ⋅ ωδ δ                        (2) 

- AC carrier generation rate ( ),G x t  is given by the relationship: 

( ) ( ), e j tG x t g x −= ⋅ ω                        (3) 

With the space component [40] written as: 
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Figure 1. Structure of front illuminated silicon solar cell 
with monochromatic light. 

 
( ) ( ) ( ) ( )( ) ( )

0 1 e xg x I R − ⋅= ⋅ ⋅ − ⋅ α λα λ λ λ                (4) 

I0, is the incident monochromatic flux, ( )α λ  and ( )R λ  are both the ab-
soption and reflection coefficients of the Si material. 
- ( ),D Tω  is the complex diffusion coefficient of excess minority carrier in the 

base at T temperature. Its expression is given by the relationship [41]:  

( ) ( )
( )

2 2

2

1,
1

jD T D T
 − ⋅ ⋅ = ×
 + 

ω τω
ωτ

                 (5) 

( )D T  is the temperature-dependent diffusion coefficient given by Einstein’s 
relationship: 

( ) ( ) bT K T
D T

q
⋅ ⋅

=
µ

                      (6) 

T is the temperature in Kelvin, Kb is the Boltzmann constant: 
23 2 1 11.38 10 m kg s KbK − − −= × ⋅ ⋅ ⋅  

The mobility coefficient is an important electronic parameter, determinated 
under many external conditions i.e., temperature [42], magnetic field [43] [44], 
radiation damage by charged particules [45] [46], doping rate [47]. Thus for 
electrons, mobility is temperature dependent and expressed by [48] [49]:  

( ) 19 2.421.43 10T T −= ×µ                       (7) 

By replacing Equations (2) and (3) in Equation (1), the continuity equation 
for the excess minority carriers’ density in the base is reduced to the following 
relationship: 

( ) ( )
( )

( )
( )

2

2 2

, ,
,,

x x g x
D Tx L T

∂
− = −

∂

δ ω δ ω
ωω

                 (8) 

( ),L Tω  is the complex diffusion length of excess minority carriers in the 
base [41] given by: 

( ) ( ),
,

1
D T

L T
j

=
+
ω τ

ω
ωτ

                      (9) 

τ  is the excess minority carriers lifetime in the base. 
The solution of Equation (8) is: 
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( ) ( ) ( )
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Coefficients A and B are determined through the boundary conditions: 
 At the junction (n+/p) (x = 0) 

( ) ( ) ( )
( )0 0

, ,
,

,
x x

x T x T
D T Sf

x D T
= =

∂
= ⋅

∂
δ δ

ω
ω

             (12) 

 On the back side (p/p+) in the base (x = H)  

( ) ( ) ( )
( )

, ,
,

,
x H x H

x T x T
D T Sb

x D T
= =

∂
= − ⋅

∂
δ δ

ω
ω

            (13) 

Sf and Sb are excess minority carrier recombination velocity respectively at 
the junction and at the back surface.  

The variation of recombination velocity Sf, through Equation (12) describes 
the solar cell operating point that is imposed by the external load [12] [14]. In-
trinsic Sf component describing the carrier losses, is then associated with the 
shunt resistor though the solar cell electrical equivalent model [50] [51] [52].  

The excess minority carrier recombination velocity Sb on the back surface is 
associated with the p/p+ junction which generates an electric field, for throwing 
back the charge carrier toward the junction [14] [15] [36] and then increases their 
collection.  

3. Results and Discussions  
3.1. Photocurrent 

The density of photocurrent at the junction is obtained from the density of mi-
nority carriers in the base and is given by the following expression: 

( ) ( ) ( )
0

, , , ,
, , , ,ph

x

x Sf Sb T
J Sf Sb T qD T

x
=

∂
=

∂
δ ω

ω ω            (14) 

where q is the elementary electron charge. 
Figure 2 shows AC photocurrent versus the junction surface recombination 

velocity for different temperature. 

3.2. AC Back Surface Recombination Velocity Sb  

For a given frequency, the representation of AC photocurrent density versus 
junction minority carrier’s recombination velocity shows the short-circuit cur-
rent density (Jphsc) for very large Sf values, where obviously we can write [13] [14] 
[35]:  

( )( )
5 110 cm s

, , , ,
0ph

Sf

J Sf Sb T
Sf −≥ ⋅

∂
=

∂

ω α λ
                (15) 
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Figure 2. Photocurrent density versus junction surface re-
combination velocity under temperature influence. (ω = 105 
rad/s; H = 0.025 cm; α = 6.2 cm−1). 

 
The solution of this Equation (15) leads to expressions of the AC recombina-

tion velocity in the back surface, given by [53]: 
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3.3. Amplitude and Phase (Bode Diagrams)  

Previous studies have focused on the second solution given to the Equation (17) 
[32] [33] [34]. Our study will consider the second solution (Equation (16) [54] 
whose module and phase are represented versus logarithm of the modulation 
frequency by Figure 3 and Figure 4 for different temperature and long wave-
length (λ) corresponding to low absorption coefficient value (α = 6.02 cm−1), 
characterized by deep penetration in the base ( ( ) 1L �α ω ) [16] [24] [53] [55].  

Sbampl (ω, T) and ϕ(ω, T) correspond, for a given temperature T, to the am-
plitude and phase component of Sb. At low frequencies (≤104 rad/s), the statio-
nary regime is observed and gives constant amplitudes that decrease with tem-
perature T (Figure 3). 

The (Ac) Sb recombination velocity at the rear face in complex form (real and 
imaginary components, with a complex number (J)) is presented by analogy with 
the Maxwell-Wagner-Sillars model (MWS) [56] and can be written as: 

( ) ( ) ( ), , ,Sb T Sb T J Sb T′ ′′= + ⋅ω ω ω                (18) 

The alternative phase (Figure 4) for a given temperature, is written: 
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Figure 3. Module of Sb versus frequency for different temper-
ature (H = 0.025 cm; α = 6.2 cm−1). 

 

 

Figure 4. Phase of Sb versus frequency for different tempera-
ture (H = 0.025cm; α = 6.2 cm−1). 

 

( )( ) ( )
( )

,
tan ,

,
Sb T

T
Sb T
′′

=
′
ω

φ ω
ω

                   (19) 

The phase of the recombination velocity is negative at low values of the pulse. 
At large frequencies (ω less than 105 rad/s), it is presented as a damped sine wave, 
with amplitude and resonant frequency decreasing with temperature.  

The positive and negative semicircles correspond respectively to small and 
large diameters of the Nyquist diagram and allow to conclude on the equivalent 
electrical model characterizing the AC Sb recombination velocity [33] [34] [35] 
[57]. 

3.4. Niquyst Diagram of the Recombination Velocity 

The Nyquist diagram which is the representation of the imaginary part of Sb as a 
function of the real part, for different temperatures. 
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Figure 5 and with a zoom represented by Figure 6 show semicircles, of dif-
ferent diameters, which decrease with temperature. The semicircles correspond-
ing to Sb’’ positive imaginary (ReSb(ind)) are of smaller diameters than those 
corresponding to Sb’’ negative imaginary (ImSb(cap)). 

The quantities (ReSb(cap)) and (ImSb(ind)) represent the inductive and capa-
citive effects (dominant effect) of the recombination velocity of the minority 
charge carriers, for each temperature. 

An intersection point (Sb’) of each semicircle with the real (horizontal) axis of 
Sb is observed. This offset (shift) from the origin of the axes narrows with tem-
perature. This difference is the real part of the recombination velocity of the 
minority charge carriers, for each temperature represents the resistive part [33] 
[34] [35] [51] [57] [58]. 

The quantities (ImSb(cap)), (ImSb(ind)) and (Sb’) are extracted, for each 
temperature and presented in the Table 1. 

 

 

Figure 5. Imaginary component versus real component of Sb 
for different temperature (H = 0.025 cm; α = 6.2 cm−1). 

 

 

Figure 6. Imaginary component versus real component of Sb 
for different temperature (H = 0.025 cm; α = 6.2 cm−1). 
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Table 1. Shif part, maximum amplitude of both the imaginary and real parts of Sb for 
different temperature values. 

T (K) 200 215 230 250 265 280 300 315 

Re(Sb) 203 193 182 170 159 148 134 124 

Re(Sb)cap 4415 3917 3499 3035 2744 2492 2205 2018 

Im(Sb)cap 2214 1965 1755 1523 1377 1251 1106 1013 

Re(Sb)ind 3294 2991 2729 2417 2223 2046 1837 1700 

Im(Sb)ind 1900 1694 1521 1332 1210 1101 977.3 901.2 

 
Figures 7-11, are drawn from the Table 1. Figure 7 shows the representation 

of (Re(Sb)), the real part (Sb’) as a function of temperature, which reflects the 
resistive (ohmic) effect associated with the recombination velocity Sb of minori-
ty carriers. 

( ) ( ) 20.69 K 3.4 10Re Sb T= − × + ×                  (20) 

The modeling expression in Figure 7 shows the decreasing line of Re(Sb) with 
temperature. This quantity is associated with the resistive behavior of the re-
combination velocity on the rear face [50] [51] [59]. The increase in temperature 
reduces the loss of minority carriers and reinforces the BSF character of the 
junction (p/p+) on the rear face. 

Figure 8 and Figure 10 give the reciprocal of both, the real parts Sb(cap) and 
Sb(ind), respectively of Sb’’, as a function of temperature. While Figure 9 and 
Figure 11, produce the reciprocal representations of the imaginary parts of 
Sb(cap) and Sb(ind), as a function of temperature. 

( ) ( )61 2.3 10 K 0.00025Re Sb cap T−= × × −             (21) 

( ) ( )61 4.7 10 K 0.00049Im Sb cap T−= × × −             (22) 

( ) ( )61 2.5 10 K 0.0002Re Sb ind T−= × × −              (23) 

( ) ( )61 5.1 10 K 0.0005Im Sb cap T−= × × −              (24) 

Figures 8-11 show increasing lines with the rise in temperature associated 
with the Umklapp process which acts on the diffusion coefficient of minority 
carriers [33] [60] [61] [62]. Modeling expressions are given through Equations 
(21)-(24). 

Figure 8 and Figure 10 show that the capacitive and inductive effects result-
ing from the imaginary part of Sb are not perfect and therefore reflect the ohmic 
losses (or leaks).  

On the other hand, Figure 9 and Figure 11 are associated respectively with a 
purely capacitive and inductive behavior of the minority carrier recombination 
velocity, by storage or discharge towards the junction (n+/p). 

The AC recombination velocity (Sb), can be presented, through its equivalent 
electric model like a pure resistance (associated with Re(Sb)), in series with both 
imperfect capacitor (capacitor in parrallel with resistor) and inductance (induc-
tance in parallel with a resistor) undergoing the effects of the temperature [25] 
[34] [63]. 
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Figure 7. Real of Sb versus temperature.  
 

 

Figure 8. Reciprocal of Sb real (capacitance) versus tem-
perature. 

 

 

Figure 9. Reciprocal of Sb imaginary (capacitance) versus 
temperature. 

https://doi.org/10.4236/jemaa.2021.135005


M. F. M. Fall et al. 
 

 

DOI: 10.4236/jemaa.2021.135005 76 Journal of Electromagnetic Analysis and Applications 
 

 

Figure 10. Reciprocal of Sb real (inductance) versus tem-
perature.  

 

 

Figure 11. Reciprocal of Sb imaginary (inductance) versus 
temperature.  

4. Conclusions 

This study of the mono-facial silicon solar cell (n+/p/p+) under temperature and 
under monochromatic illumination in frequency modulation, made it possible 
to extract the theoretical expression AC of the recombination velocity of minor-
ity carriers on the rear face (p/p+), at long wavelengths giving deep penetration 
(low absorption coefficient) of the wave. 

The analysis of this AC recombination velocity, at different temperatures, 
through the diagrams of Boode (amplitude and phase) and Nyquist, led to an 
equivalent electrical model, suggesting, a series resistance associated with both 
imperfect capacitor and an inductive winding in series. At low frequencies (static 
regime), whatever the temperature, the resistive effect of the AC Sb is preponde-
rant. 
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