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Abstract 
Newton’s method is used to find the roots of a system of equations 
( ) 0f x = . It is one of the most important procedures in numerical analysis, 

and its applicability extends to differential equations and integral equations. 
Analysis of the method shows a quadratic convergence under certain 
assumptions. For several years, researchers have improved the method by 
proposing modified Newton methods with salutary efforts. A modification of 
the Newton’s method was proposed by McDougall and Wotherspoon [1] with 
an order of convergence of 1 2+ . On a new type of methods with cubic 
convergence was proposed by H. H. H. Homeier [2]. In this article, we 
present a new modification of Newton method based on secant method. 
Analysis of convergence shows that the new method is cubically convergent. 
Our method requires an evaluation of the function and one of its derivatives. 
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1. Introduction 

Determining zeros of scalar function f lines up with the most important 
problems in both theory and practice not only in mathematics but also in many 
other fields like engineering sciences, physics, computer science, finance. These 
problems lead to a well-endowed mixture of mathematics, numerical analysis 
and computing science. Discovering the source of non-linear equation is one of 
the most important challenges in science and engineering. The main concept to 
all root finding methods is the recurrence of successive approximation. Actually, 
analytical method for the non-linear Equation (1.1) is hard or nearly non 
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existent.  

( ) 0 where :f x f D= ⊂ →                   (1.1) 

In current years, researchers have been curious about modifying the Newton 
method which is the foundation of all algorihms for solving these problems. 
Current design methods tend to focus on usage of fonction evaluations and 
avoid usage of the derivatives. In this study, we consider a non-linear Equation 
(1.1) and we present a new modification of Newton method. The analysis of 
convergence shows that the new method is cubically convergent. In a recurrence 
way, our method requires an evaluation of the function and the one of its 
derivatives.  

2. Preliminaries 

The idea of the iterative method is that we make some estimate of the solution 
and we repeatedly improve that estimate using some well defined operations, 
until we end up with an approximate answer which is quite close to real answer. 

Let :f D ⊂ →   be r-times Fréchet differentiable function on an open 
interval D ⊂  . *x  be a real zero of the non linear equation  

( ) 0f x =                            (2.1) 

As well known, roots of Equation (2.1) can be found analytically only in some 
special cases. We most commonly solve (2.1) approximately, that is, we find an 
approximation to the zero *x  by applying some iterative method of the form:  

( )1n nx xϕ+ =                          (2.2) 

where nx  is an approximation to the zero *x . The function ϕ  is called 
iteration function. 

Definition 2.1. Let ( )f x  be a real valued function with root *x  and let 
( )n n
x  be a sequence of real number from iterative method (sequence of iterate) 

that converge toward *x . If there exists a real number r and a nonzero constant 

pC  such that:  

( )
*

1

*
lim 0.n

ppn
n

x x
C

x x
+

→+∞

−
= ≠

−
 

Then p is called the order of convergence and pC  is the factor of convergence 
or the asymptotic error constant.  

Definition 2.2. Let *
n ne x x= −  be the error of the approximation in the nth 

iteration.  

( )1
1

p p
n p n ne C e O e +
+ = +                     (2.3) 

is the error equation. If the error equation exists, the p is the order of convergence 
of the iterative method.  

Theorem 2.3. (Schroder-Traub 1964) Let ϕ  an iterative function such that 
( )rϕ  is continuous in a neighborhood of *x . Then, ϕ  is of order p if only if  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1* * * * * *, 0, 0p px x x x x xϕ ϕ ϕ ϕ ϕ−′= = = = = ≠      (2.4) 
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The asymptotic error constant is given by:  
( ) ( )**

1

*
lim

!

p
n

pn
n

xx x

px x

ϕ+

→+∞

−
=

−
                     (2.5) 

Theorem 2.4 (Traub 1964 [3]) Let *x  be a simple zero of a function f and let 
ϕ  define an iterative method of order p. Then a composite iterative function 
Ψ  introduced by Newtons method  

( ) ( )
( )( )
( )

f x
x x

f x
ϕ

ϕΨ = −
′

                     (2.6) 

defines an iterative method of order 1p + .  
Theorem 2.5 (Traub 1964 p. 28 [3]) Let 1 2, , , sϕ ϕ ϕ  be iteration functions 

with the orders 1 2, , , sp p p  respectively. Then the composition  

( ) ( )1 2 ss xϕ ϕ ϕΨ =                        (2.7) 

defines the iterative method of order 1 2 sp p p .  
Definition 2.6. Let r be the number of function evaluations per iteration of 

the method. The efficiency index of the method is defined by:  
1
rrIE p p= =                           (2.8) 

where p is the order of convergence of the method. 
Definition 2.7. Suppose that 2nx − , 1nx −  et nx  are three successive iterative 

closer to the root *x . Then the computational order of convergence may be 
approximated by:  

( )1

1 2

ln n n

n n

COC
δ δ

δ δ
−

− −

÷
≈

÷
                       (2.9) 

where ( ) ( )n n nf x f xδ ′= ÷ .  

3. Construction of the Methods and Convergence Analysis 

In this section, we recall the modified Newton method that was proposed by 
Gentian Zavalani ([4]). To determine the order of convergence of the sequence 
( )n n
x , let consider the Taylor expansion of ( )ng x  where the iterative method 

is ( )1n nx g x+ =  and the function g satisfied:  
1) There exist [ ],a b  such that ( ) [ ],g x a b∈  for all [ ],x a b∈   
2) There exist [ ],a b  such that ( ) 1g x L≤ <  for all [ ],x a b∈   

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

3
3

2!

3! !

n n n

l
l

n n

g x
g x g x g x x x x x

g x g x
x x x x

l

′′
′= + − + −

+ − + + − + 

       (3.1) 

Definition 3.1. The mapping : nF →   is (totally or Fréchet) differentiable 
at x if the Jacobian matrix ( )( ) ( )i jij ij

JF x F= ∂  exists at x and  

( ) ( ) ( )
0

lim 0
h

F x h F x JF x h
h→

+ − +
=                 (3.2) 
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If 1n = , this defintion reduces to the usual definition of differentiability.  
Definition 3.2. For mapping : n nF Ω ⊂ →  , a solution *x ∈Ω  of ( )F x
0=  is simple if F is differentiable at *x  and ( )*JF x  is non singular.  
In this work, we assume that f admits a unique and simple solution.  

Iterative Methods 

For any , nx x D∈  we may write the Taylor’s expansion for f as follows:  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( )
( )

( ) ( )( )( )

2

3 1
3 1

1
1

0

2!

3! 1 !

1
d

1 !

n
n n n n

r
rn n

n n

r
rr

n n n

f x
f x f x f x x x x x

f x f x
x x x x

r

t
f x t x x x x t

r

−
−

−

′′
′= + − + −

+ − + + − +
−

−
+ + − −

−∫

 
      (3.3) 

for 1r = , we have:  

( ) ( ) ( )( )( )1

0
dn n n nf x f x f x t x x x x t′= + + − −∫            (3.4) 

Approximating the integral in (3.4), we have:  

( )( )( ) ( )( )1

0
dn n n n nf x t x x x x t f x x x′ ′+ − − ≈ −∫           (3.5) 

By using f(x) = 0, we have  

( ) ( )( ) 0n n nf x f x x x′+ − =                    (3.6) 

Then  

( )
( )1

n
n n

n

f x
x x

f x+ = −
′

                       (3.7) 

This is known as Newton method for the non linear equations ( ) 0f x =  and 
has quadratic convergence when 0x  the initial guess is quite close to *x . If we 
approximate the integral in (3.4) by using the closed-open quadrature formula 
([5]):  

( ) ( ) ( ) ( )( )
1

d
n

mx
m n j n j nx

j
f t t Q t x x f x x xω τ

=

′ ′≈ = − + −∑∫         (3.8) 

• [ ]0,1jτ ∈ .  

• jω  weigths satisfying 1 1m
jj ω

=
=∑  and 1

1
2

m
j jj ω τ

=
=∑   

Then  

( )( )( ) ( ) ( )1

0

21d 3
4 3

n
n n n n n

x x
f x t x x x x t f x f x x

 +  ′ ′ ′+ − − ≈ + −  
  

∫    (3.9) 

Thus, by using f(x) = 0, we have:  

( )

( )
1

4
23

3

n
n n

n
n

f x
x x

x xf x f
+ = −

+ ′ ′+  
 

                  (3.10) 
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( ) ( )
1

1
2

4 3
3

n
n n n n

x x
x x f x f f x

−

+

 +  ′ ′= − +  
  

             (3.11) 

Algorithm For a given 0x , compute approximate solution 1nx +   
• Predictor step:  

( )
( )

n
n n

n

f x
x

f x
ρ = −

′
                         (3.12) 

• Correction step:  

( ) ( )
1

1
2

4 3
3

n
n n n n

x x
x x f x f f x

−

+

 +  ′ ′= − +  
  

             (3.13) 

This is another iterative method for solving the non linear Equation (1.1). 
These modifications of Newton method are very important and interesting because 
per iteration, they require one evaluation of the function and two evaluation of the 
derivative, not requiring the second derivative f ′′  but they can converge 
cubically.  

Theorem 3.3. Let :f D ⊂ →   be r-times Fréchet differentiable function 
on an open interval D ⊂  . *x  be a real zero of the non linear equation ( )f x  

0= . The iterative method defined by: For given 0x ,  

( )
( )

( )

( )
1

4
23

3

n
n n

n

n
n n

n
n

f x
x

f x

f x
x x

x xf x f

ρ

+


= − ′


= − +  ′ ′+    

                 (3.14) 

has cubic convergence and satisfies the error equation:  

( ) ( ) ( )( ) ( ) ( )1 3 4
1

2
3

3
n

n n n n n n n
x x

f x f e f x f x f x e O e
−

+

 +    ′ ′ ′′ ′ ′′+ = +       
   (3.15) 

4. New Modified Newton Method 

We consider the predictor-corrector method (3.14):  

( )
( )

( )

( )
1

4
23

3

n
n n

n

n
n n

n n
n

f x
x

f x

f x
x x

xf x f

ρ

ρ+


= − ′


= − +  ′ ′+    

                 (4.1) 

We replace ( )nf x′  by finite difference approximation  

( ) ( )1

1

n n

n n

f x f x
x x

−

−

−

−
                         (4.2) 

which is a suitable approximation which does not require new information. The 
predictor step becomes the secant method scheme. The scheme (3.14) becomes:  
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( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

1

1

1
1

1 1

4
23

3

n n n
n n

n n

n n n
n n

n n
n n n n

x x f x
x

f x f x

x x f x
x x

xf x f x x x f

ρ

ρ

−

−

−
+

− −

 −
= − −

 −
= − +  ′− + −    

       (4.3) 

Our option is motivated by the fact that the evaluation of two derivative may 
delay the convergence of the method. The proposed method requires only by 
iteration an evaluation of the function and one of its derivative which improved 
the index of efficiency of the method compared to those propose in many other 
works. It has a convergence of order 3p = . More precisely, the algorithm of our 
iterative method is the following:  

1) For a given 0x ,  
2) computing  

( )
( )

0
1 0

0

f x
x x

f x
= −

′
                        (4.4) 

3) For 1n ≥ ,  

( ) ( )
( ) ( )

1

1

n n n
n n

n n

x x f x
x

f x f x
ρ −

−

−
= −

−
                   (4.5) 

and  

( ) ( )

( ) ( ) ( )
1

1

1 1

4
23

3

n n n
n n

n n
n n n n

x x f x
x x

xf x f x x x f ρ
−

+

− −

−
= −

+ ′− + −  
 

        (4.6) 

Theorem 4.1. Let :f D ⊂ →   be r-times Fréchet differentiable function on 
an open interval D ⊂  . *x  be a real zero of the non linear equation ( ) 0f x = . 
The iterative method defined by (4.3) has p = 3 order convergence and the error 
equation is:  

( )
( ) ( ) ( ) ( )

( ) ( )

2
1

1 1
1

1
2 3

1
2

3
3

n n
n n n

n n

n n
n n n n

x x
e f x f x

f x f x

x
x x f f x e

ρ

−
+ −

−

−

−

− 
= −− 

+  ′ ′′ + −     

          (4.7) 

Proof. Let *x  the unique root simple of Equation (1.1). 
Let nx  an approximation of *x  obtained by the Scheme (4.6). 
Let *

n ne x x= −  the approximation error.  
*

1 1n ne x x+ += −                           (4.8) 

( ) ( )

( ) ( ) ( )
1*

1

1 1

4
23

3

n n n
n n

n n
n n n n

x x f x
e x x

xf x f x x x f ρ
−

+

− −

−
= − +

+ ′− + −  
 

     (4.9) 

( ) ( )

( ) ( ) ( )
1

1

1 1

4
23

3

n n n
n n

n n
n n n n

x x f x
e e

xf x f x x x f ρ
−

+

− −

−
= +

+ ′− + −  
 

      (4.10) 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

2
3

3

2
3 4

3

n n
n n n n n

n n
n n n n n n n n

x
f x f x x x f e

x
f x f x x x f e x x f x

ρ

ρ

− − +

− − −

 +  ′− + −  
  

 +  ′= − + − + −  
  

 (4.11) 

By expansion, we have:  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2* * *

3 4
3 4* *

0
2!

3! 4!

n
n n n n

n n
n n

f x
f x f x f x x x x x

f x f x
x x x x

′′
′= = + − + −

+ − + − +

      (4.12) 

Then  

( ) ( ) ( ) ( ) ( ) ( ) ( )3 4
2 3 40

2! 3! 4!
n n n

n n n n n n

f x f x f x
f x f x e e e e

′′
′= + + + + +     (4.13) 

By replacing ( )f x′  by (4.2)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 4
1 2 3 4

1 2! 3! 4!
n n n n n

n n n n n
n n

f x f x f x f x f x
f x e e e e

x x
−

−

′′−
− = + + + +

−
  (4.14) 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

3
2 31 1

1 1

4
41

1

2! 3!

4!

n n
n

n n

n nn n n n
n n n

n n n n

nn n
n

n n

x x
f x

f x f x

f x f xx x x x
e e e

f x f x f x f x

f xx x
e

f x f x

−

−

− −

− −

−

−

−
−

−

′′− −
= + +

− −

−
+ +

−


     (4.15) 

By using the predictor step, we have:  

( ) ( ) ( )1

1

n n
n n n

n n

x x
x f x

f x f x
ρ −

−

−
− = −

−
                 (4.16) 

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3
2 31 1

1 1

4
41

1

2! 3!

4!

n n

n nn n n n
n n n

n n n n

nn n
n

n n

x

f x f xx x x x
e e e

f x f x f x f x

f xx x
e

f x f x

ρ

− −

− −

−

−

−

′′− −
= + +

− −

−
+ +

−


 

( )2 2
3 3

n n
n n n

x
x x

ρ
ρ

+
= + −                    (4.17) 

Taylor expansion of 
2

3
n nx

f
ρ+ ′ 

 
 at nx  gives:  

( ) ( ) ( )

( ) ( ) ( )
2

2 3

2 2
3 3

1 2
2 3

n n
n n n n

n n n

x
f f x x f x

x f x

ρ
ρ

ρ

+ ′ ′ ′′= + − 
 

 + − + 
 



         (4.18) 
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( ) ( )
( ) ( )

( )

( ) ( )

( ) ( ) ( )

1 21

1 1

3
31

1

2
3

2
3 2!

3!

n n

n n nn n
n n

n n n n

nn n
n n

n n

x
f

f x f x f xx x
e e

x x f x f x

f xx x
e f x

f x f x

ρ

− −

− −

−

−

+ ′ 
 

′′− −
= + +

− −
− ′′+ + 

− 


 

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

2
21

1

23
331

1

3
21

1

33
431

1

1 2
2 3 2!

3!

1 2
6 3 2!

3!

nn n
n n

n n

nn n
n n

n n

nn n
n n

n n

nn n
n n

n n

f xx x
e e

f x f x

f xx x
e f x

f x f x

f xx x
e e

f x f x

f xx x
e f x

f x f x

−

−

−

−

−

−

−

−

′′ − + +  −  

−
+ + 

− 
′′ − + +  −  

−
+ + +

− 



 

         (4.19) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 22 21 1

1 1

3
3 21

1

4 2
4 2 31

1

3 3
3 2 31

1

2
3

2
3 3

9

2
36 9

2 4
9 81

n n

n n n n n n
n n

n n n n

n n n
n n

n n

n n n n
n n n

n n

n n n n
n n n

n n

x
f

f x f x e e x x
f x f x

x x f x f x

e x x
f x f x
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By using (4.14) we have,  
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By using (4.22) and (4.23), 
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5. Numerical Examples and Comparison 

We will compare the performance of our method with some existing methods 
and use in [1]. Therefore, we will give numerical results for some functions and 
initial values. 

From the analysis made of Table 1, we can notice that the efficiency index of 
the proposed method is higher than that of the secant method which was already 
better than the Newton method and others developed in [1]. This is explained by 
the fact our method even though of order three of convergence requires only two 
evaluations of the function by iteration whereas most of the method of order 
three existing in the literature use three evaluations of the function and this by 
supposing that the evaluation of the function and its derivative have the same 
numerical cost. Our method defined by 4.3 is preferable. 
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Table 1. Efficiency index of different numerical methods. 

Methods 
Number of evaluation of 

function or derivative 
convergence order efficiency index 

Secant 1 ( )0.5 1 5+  1.6180 

Newton method 
standard 

2 2 1.4142 

McDouglall method 3 1 2+  1.5538 

Present method 2 3 1.7320 

Other cubic method 3 3 1.4422 

 
Table 2. ( ) ( )2 2sin 1f x x x= − +  et 0 1x = . 

Method Number of iteration Number of function evaluation xn 

Newton method 8 16 1.40449166 

Mc Dougall method 7 14 1.40449166 

HH Homeier 4 13 1.40449166 

Zavalani method 4 12 1.40449166 

Our method 4 8 1.40449166 

 
Table 3. ( ) ( )2 exp 3 2f x x x x= − − +  et 0 3x = . 

Method Number of iteration Number of function evaluation xn 

Newton method 8 16 0.257530272 

Mc Dougall method 7 14 0.257530272 

HH Homeier 5 16 0.257530272 

Our method 5 10 0.257530272 

 
Table 4. ( ) ( )2exp 7 30 1f x x x= + − −  et 0 3.5x = . 

Method Number of iteration Number of function evaluation xn 

Newton method 14 28 3.0 

Mc Dougall method 12 24 3.0 

HH Homeier 8 25 3.0 

Zavalani method 6 18 3.0 

Our method 7 14 3.0 

 
Table 5. ( ) 1111 1f x x= −  et 0 0.7x = . 

Method Number of iteration Number of function evaluation xn 

Newton method 8 14 0.804133117 

Zavalani method 4 12 0.804133117 

Our method 4 8 0.804133117 
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6. Conclusion 

We have presented in this paper a modified Newton method of order three of 
convergence, more efficient than most of the methods known in the literature. 
Analysis of efficiency shows that this method is preferable for solving the 
non-linear equations. A comparative study of the number of function evaluations 
and the number of iterations with convergence of some methods is indicated in 
Tables 2-5. The result of these tables confirms the theory. 
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