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Abstract 
We propose two more general methods to construct nullnorms on bounded 
lattices. By some illustrative examples, we demonstrate that the new method 
differ from the existing approaches. 
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1. Introduction 

The notions of triangular norms (t-norms for short) and triangular conorms (t-co- 
norms for short) were introduced by Schweizer and Sklar [1]. Nullnorms are 
generalizations of triangular norms and triangular conorms with a zero element 
in the interior of the unit interval, and have to satisfy some additional constraints. 
Nullnorms are important from a theoretical viewpoint but also because of their 
numerous potential applications, such as expert systems, fuzzy quantifiers, neur-
al networks, fuzzy logic [2]. The constructions of nullnorms were first studied on 
the unit interval [2]-[9]. In the subsequent studies, the interval has extended to 
bounded lattices [10] [11] [12]. 

Some constructions of nullnorms on bounded lattices were demonstrated in 
previously papers. Based on the existence of t-norms and t-conorms on an arbi-
trary bounded lattice, Karaçal et al. [10] proposed three construction methods of 
nullnorms on bounded lattices with an arbitrary zero element { }\ 0,1a L∈ . Sub-
sequently, Ümit Ertuğrul [11] proposed two construction methods of nullnorms 
on bounded lattices, which can be recognized as generalizations of two construc-
tion methods proposed in [10]. 

In this paper, we propose two more general construction methods of null-
norms on an arbitrary bounded lattice. The present study is organized as follows: 
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In Section 2, we recall some basic concepts and show some existing construc-
tions of nullnorms on an arbitrary bounded lattice. In Section 3, we introduce 
the notions of t-subnorm and t-subcnonorm. By using these operations, we pro-
pose new methods to obtain nullnorms on L under some additional constraints 
and their characteristics are examined. Finally, this summarization can be found 
in Section 4. 

2. Preliminaries 

A lattice is a partially ordered set ( ),L ≤  in which each two-element subset  
{ },x y  has an infimum, denoted as x y∧ , and a supremum, denoted as x y∨ . 
A bounded lattice ( ), ,0,1L ≤  is a lattice that has the bottom and top elements 
written as 0 and 1, respectively. We denote ( ), ,0,1L ≤  simply by L in this ar-
ticle. 

Let ( ), ,0,1L ≤  be a bounded lattice and 2
1 2, :V V L L→  be two binary oper-

ations on L, we can define a partial order: 

( ) ( )1 2 1 2, , for all , .V V V x y V x y x y L≤ ⇔ ≤ ∈  
Given a bounded lattice ( ), ,0,1L ≤  and ,a b L∈ , a b≤ , a subset [ ],a b  of L 

is defined as [ ] { }, |a b x L a x b= ∈ ≤ ≤ . Similarly, denote [ ) { },a b a x b= ≤ < ,  
( ] { }, |a b x L a x b= ∈ < ≤  and ( ) { }, |a b x L a x b= ∈ < < . If a and b are incom- 
parable, we use the notation a b . The set of all elements which are incompar-
able with a are denoted by aI . 

Definition 2.1. ([13] [14]) Let ( ), ,0,1L ≤  be a bounded lattice. An operation 
2:T L L→  is called a triangular norm (t-norm for short) if it is commutative, 

associative, increasing with respect to both variables and has the neutral element 
1 L∈  such that ( )1,T x x=  for all x L∈ . 

Definition 2.2. ([13] [14]) Let ( ), ,0,1L ≤  be a bounded lattice. An operation 
2:S L L→  is called a triangular conorm (t-conorm for short) if it is commuta-

tive, associative, increasing with respect to both variables and has the neutral 
element 0 L∈  such that ( )0,S x x=  for all x L∈ . 

Definition 2.3. ([15]) Let ( ), ,0,1L ≤  be a bounded lattice. An operation  
2:F L L→  is called a t-subnorm on L if it is commutative, associative, increas-

ing with respect to both variables and ( ),F x y x y≤ ∧  for all ,x y L∈ . 
Definition 2.4. ([15]) Let ( ), ,0,1L ≤  be a bounded lattice. An operation  

2:R L L→  is called a t-subconorm on L if it is commutative, associative, in-
creasing with respect to both variables and both ( ),R x y x y≥ ∨  for all  

,x y L∈ . 
Proposition 2.5. ([15]) If 2

1 :F L L→  is a t-subnorm on a bounded lattice L, 
then 2:T L L→  defined by 

( ) ( ) ( ) { }( )2
1 , , if , \ 1,

, otherwise

F x y x y LT x y
x y

 ∈= 
∧

             (1) 

is a t-norm on L. 
Dually, if 2

1 :R L L→  is a t-subconorm on a bounded lattice L, then  
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2:S L L→  defined by 

( ) ( ) ( ) { }( )2
1 , , if , \ 0,

, otherwise

R x y x y LS x y
x y

 ∈= 
∨

             (2) 

is a t-conorm on L. 
Definition 2.6. ([10]) Let ( ), ,0,1L ≤  be a bounded lattice. A commutative, 

associative, non-decreasing in each variable function 2:V L L→  is called a null-
norm if an element a L∈  exists such that ( ),0V x x=  for all x a≤  and  
( ),1V x x=  for all x a≥ . 
It is easy to see that ( ),V x a a=  for all x L∈ , and thus a is the zero element 

for V [10]. 
Proposition 2.7. ([16]) Let ( ), ,0,1L ≤  be a bounded lattice and 2:V L L→  

be a nullnorm on L with the zero element a. Then, [(i)] 
(i) [ ] [ ] [ ]2

2

0, : 0, 0,aV a a→  is a t-conorm on [ ]0,a ; 
(ii) [ ] [ ] [ ]2

2

,1 : ,1 ,1aV a a→  is a t-norm on [ ],1a . 
Let ( ), ,0,1L ≤  be a bounded lattice and { }\ 0,1a L∈ . Let [ ] [ ]2: ,1 ,1T a a→  

be a t-norm on [ ],1a  and [ ] [ ]2: 0, 0,S a a→  be a t-conorm on [ ]0,a . Based 
on the knowledge of the existence of t-norms and t-conorms on an arbitrary 
given bounded lattice, many construction methods of nullnorms were presented 
in previous papers. Generally speaking, these construction methods on an arbi-
trary bounded lattice under no additional constraints can be divided into two 
groups. One is ( ) ( ), 2, :T S

aV x y L L→  proposed by Karaçal et al. in [10], which is 
defined as 

( ) ( )
( ) ( ) [ ]
( ) ( ) [ ]

2

, 2

, , if , 0,
, , , if , ,1

, otherwise.

T S
a

S x y x y a
V x y T x y x y a

a

 ∈


=  ∈



             (3) 

The structures of ( ),T S
aV  is shown in Figure 1. 

The other group is S
TV  and its dual, i.e., 2:T

SV L L→ , which are proposed 
by Ümit Ertuğrul [11] and defined as 

( )

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ] [ ]

2

2

, , if , 0,

, , if , ,1,
, , if , 0, 0,

, otherwise

S
T

a a a a

S x y x y a

T x y x y aV x y
S x a y a x y a I I a I I
a

 ∈

 ∈= 

∧ ∧ ∈ × × ×



∪ ∪
  (4) 

 

 

Figure 1. The frame of ( ),T S
aV . 
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and 

( )

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ] [ ]

2

2

, , if , 0,

, , if , ,1,
, , if , ,1 ,1

, otherwise.

T
S

a a a a

S x y x y a

T x y x y aV x y
T x a y a x y a I I a I I
a

 ∈

 ∈= 

∨ ∨ ∈ × × ×



∪ ∪
   (5) 

The structures of S
TV  and T

SV  are shown in Figure 2 and Figure 3, respec-
tively. In these figures, we denote ( ),S S x a y a∧ = ∧ ∧  and  

( ),T T x a y a∨ = ∨ ∨ . 

3. New Methods for Constructing Nullnorms  
on Bounded Lattices 

In order to reduce the complexity in the proof of associativity, we introduce the 
following proposition. 

Proposition 3.1. ([17]) Let S be a nonempty set and , ,A B C  be subsets of S. 
Let H be a commutative binary operation on S. Then H is associative on  
A B C∪ ∪  if both of the following statements hold: 

1) ( )( ) ( )( ), , , ,H H x y z H x H y z=  for all  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , , , , , , , ,

, , , , , , , ,

x y z A A A B B B C C C A A B A B B

A A C A C C B B C B C C

∈ ∪ ∪ ∪ ∪

∪ ∪ ∪ ∪
; 

2) ( )( ) ( )( ) ( )( ), , , , , ,H H x y z H x H y z H H x z y= =  for all  

( ) ( ), , , ,x y z A B C∈ . 

Now, we introduce two construction methods which can be regard as genera-
lizations of existing methods. 

Theorem 3.2. Let ( ), ,0,1L ≤  be a bounded lattice and { }\ 0,1a L∈ . Let  
 

 
Figure 2. The frame of S

TV . 
 

 
Figure 3. The frame of T

SV . 
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[ ] [ ]2: ,1 ,1T a a→  be a t-norm on [ ],1a , [ ] [ ]2: 0, 0,S a a→  be a t-conorm on  
[ ]0,a  and [ ] [ ]2: 0, 0,R a a→  be a t-subconorm on [ ]0,a . If S R≤  and 

( )( ) ( )( ) ( )( ) [ ], , , , , , forall , , 0, ,S x R y z R R x y z R S x y z x y z a= = ∈    (6) 

then , 2:S R
TV L L→  is a nullnorm on L with the zero element a, where 

( )

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ] [ ]

2

2
,

, , if , 0,

, , if , ,1,
, , if , 0, 0,

, otherwise.

S R
T

a a a a

S x y x y a

T x y x y aV x y
R x a y a x y a I I a I I
a

 ∈

 ∈= 

∧ ∧ ∈ × × ×



∪ ∪
  (7) 

Proof. The commutativity of ,S R
TV  can be proven directly based on its descrip-

tion. Similarly, we can express ( ) ( ), , 0 ,0S R
TV x S x x= =  for all [ ]0,x a∈  and  

( ) ( ), ,1 ,1S R
TV x T x x= =  for all [ ],1x a∈ . 
Monotonicity: Let us prove that if x y≤ , then ( ) ( ), ,, ,S R S R

T TV x z V y z≤  for 
all z L∈ . If [ ], 0,x y a∈ , or , ax y I∈ , or ( ], ,1x y a∈ , then it is clear that  
( ) ( ), ,U x z U y z≤  because ( ),x z  and ( ),y z  are in the same piece of U and U 

is monotonic in each piece. Moreover, ( ) ( ] [ ] [ ] ( ], ,1 0, 0, ,1a ax y a a I a I a∈ × × ×∪ ∪  
contradicts the assumption that x y≤ . Therefore, there are only three cases left 
to consider, namely, ( ) [ ] ( ], 0, ,1x y a a∈ × , ( ) [ ], 0, ax y a I∈ × , and  
( ) ( ], ,1ax y I a∈ × . 

(I) Assume that [ ]0,x a∈  and ( ],1y a∈ .  
(i) If [ ]0,z a∈ , then ( ) ( ), , ,S R

TV x z S x z=  and ( ), ,S R
TV y z a= . As  

( ),S x z a≤ , we have ( ) ( ), ,, ,S R S R
T TV x z V y z≤ . 

(ii) If ( ],1z a∈ , then ( ), ,S R
TV x z a=  and ( ) ( ), , ,S R

TV y z T y z= . As  
( ),a T y z≤ , we have ( ) ( ), ,, ,S R S R

T TV x z V y z≤ . 
(iii) If az I∈ , then ( ) ( ), , ,S R

TV x z R x a z a= ∧ ∧  and ( ), ,S R
TV y z a= . As  

( ),R x a z a a∧ ∧ ≤ , we have ( ) ( ), ,, ,S R S R
T TV x z V y z≤ . 

Therefore, ( ) ( ), ,, ,S R S R
T TV x z V y z≤  holds for ( ) [ ] [ ], 0, ,1x y a a∈ × . 

(II) Assume that [ ]0,x a∈  and ay I∈  such that x y≤ .  
(i) If [ ]0,z a∈ , then ( ) ( ), , ,S R

TV x z S x z=  and ( ) ( ), , ,S R
TV y z R y a z a= ∧ ∧ . 

As ( ) ( ) ( ) ( ), , , ,S x z S x a z a R x a z a R y a z a= ∧ ∧ ≤ ∧ ∧ ≤ ∧ ∧ , we have  
( ) ( ), ,, ,S R S R

T TV x z V y z≤ . 
(ii) If [ ],1z a∈ , then ( ), ,S R

TV x z a=  and ( ), ,S R
TV y z a= , and thus  

( ) ( ), ,, ,S R S R
T TV x z V y z≤ . 
(iii) If az I∈ , then ( ) ( ), , ,S R

TV x z R x a z a= ∧ ∧  and  
( ) ( ), , ,S R

TV y z R y a z a= ∧ ∧ . As ( ) ( ), ,R x a z a R y a z a∧ ∧ ≤ ∧ ∧ , we have  
( ) ( ), ,, ,S R S R

T TV x z V y z≤ . 
Therefore, ( ) ( ), ,, ,S R S R

T TV x z V y z≤  holds for ( ) [ ], 0, ax y a I∈ × . 
(III) Assume that ax I∈  and ( ],1y a∈  such that x y≤ .  
(i) If [ ]0,z a∈ , then ( ) ( ), , ,S R

TV x z R x a z a= ∧ ∧  and ( ), ,S R
TV y z a= . As  

( ),R x a z a a∧ ∧ ≤ , we have ( ) ( ), ,, ,S R S R
T TV x z V y z≤ . 

(ii) If [ ],1z a∈ , then ( ), ,S R
TV x z a=  and ( ) ( ), , ,S R

TV y z T y z= . As  
( ),a T y z≤ , we have ( ) ( ), ,, ,S R S R

T TV x z V y z≤ . 
(iii) If az I∈ , then ( ) ( ), , ,S R

TV x z R x a z a= ∧ ∧  and ( ), ,S R
TV y z a= . As  
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( ),R x a z a a∧ ∧ ≤ , we have ( ) ( ), ,, ,S R S R
T TV x z V y z≤ . 

Therefore, ( ) ( ), ,, ,S R S R
T TV x z V y z≤  holds for ( ) ( ], ,1ax y I a∈ × . 

Combining the above cases, we obtain that ( ) ( ), ,, ,S R S R
T TV x z V y z≤  holds for 

, ,x y z L∈  such that x y≤ . Therefore, ,S R
TV  is monotonic. 

Associativity: It can be shown that ( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV x V y z V V x y z=  

for all , ,x y z L∈ . By Proposition 3.1, We only need to consider the following 
cases:  

(i) If [ ], , 0,x y z a∈ , then since S is associative, we have  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(ii) If [ ], , ,1x y z a∈ , then since T is associative, we have  
( )( ) ( )( ), , , ,, , , ,S R S R S R S R

T T T TV V x y z V x V y z= . 
(iii) If , , ax y z I∈ , then  

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV V x y z V R x a y a z R R x a y a z a= ∧ ∧ = ∧ ∧ ∧ ,  

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV x V y z V x R y a z a R x a R y a z a= ∧ ∧ = ∧ ∧ ∧ . As R is 

an associative function on [ ]0,a , we have  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(iv) If [ ], 0,x y a∈  and [ ],1z a∈ , then  

( )( ) ( )( ), , ,, , , ,S R S R S R
T T TV V x y z V S x y z a= =  and  

( )( ) ( ), , ,, , ,S R S R S R
T T TV x V y z V x a a= = , and thus  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(v) If [ ]0,x a∈  and [ ], ,1y z a∈ , then ( )( ), , , ,S R S R
T TV V x y z a=  and  

( )( ) ( )( ), , ,, , , ,S R S R S R
T T TV x V y z V x T y z a= = . Thus  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(vi) If [ ], 0,x y a∈  and az I∈ , then  

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV V x y z V S x y z R S x y z a= = ∧  and  

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV x V y z V x R y a z a S x R y a z a= ∧ ∧ = ∧ ∧ . It follows  

from (6) that ( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(vii) If [ ]0,x a∈  and , ay z I∈ , then  

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV V x y z V R x a y a z R R x a y a z a= ∧ ∧ = ∧ ∧ ∧  and 

( )( ) ( )( ) ( )( ), , ,, , , , , ,S R S R S R
T T TV x V y z V x R y a z a S x R y a z a= ∧ ∧ = ∧ ∧ . It follows  

from (6) that ( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(viii) If [ ], ,1x y a∈  and az I∈ , then  

( )( ) ( )( ), , ,, , , ,S R S R S R
T T TV V x y z V T x y z a= =  and ( )( ), ,, ,S R S R

T TV x V y z a= . Thus  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 

(ix) If [ ],1x a∈  and , ay z I∈ , then ( )( ), , , ,S R S R
T TV V x y z a=  and  

( )( ) ( )( ), , ,, , , ,S R S R S R
T T TV x V y z V x R y a z a a= ∧ ∧ = . Thus  

( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV V x y z V x V y z= . 
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(x) If [ ]0,x a∈ , ( ],1y a∈ , az I∈ , then ( )( ), , , ,S R S R
T TV V x y z a= ,  

( )( ), ,, ,S R S R
T TV x V y z a=  and ( )( ) ( )( ), , ,, , , ,S R S R S R

T T TV V x z y V R x a z a y a= ∧ ∧ = .  

Thus ( )( ) ( )( ) ( )( ), , , , , ,, , , , , ,S R S R S R S R S R S R
T T T T T TV V x y z V x V y z V V x z y= = . 

From (i) to (x), we obtain that ( )( ) ( )( ), , , ,, , , ,S R S R S R S R
T T T TV x V y z V V x y z=  for 

all , ,x y z L∈  by Proposition 3.1. Therefore, ,S R
TV  is a nullnorm on L with 

the zero element a. 
Theorem 3.3. Let ( ), ,0,1L ≤  be a bounded lattice and { }\ 0,1a L∈ . Let  
[ ] [ ]2: ,1 ,1T a a→  be a t-norm on [ ],1a , [ ] [ ]2: ,1 ,1F a a→  be a t-subnorm on  

[ ],1a  and [ ] [ ]2: 0, 0,S a a→  be a t-conorm on [ ]0, a . If F T≤  and  
( )( ) ( )( ) ( )( ), , , , , ,T x F y z F F x y z F T x y z= =  for all , ,x y z L∈ , then  

, 2:T F
SV L L→  is a nullnorm on L with the zero element a, where 

( )

( ) ( ) [ ]
( ) ( ) [ ]

( ) [ ] [ ]

2

2
,

, , if , 0,

, , if , ,1,
( , ), if , ,1 ,1
, otherwise.

T F
S

a a a a

S x y x y a

T x y x y aV x y
F x a y a x y a I I a I I
a

 ∈

 ∈= 

∨ ∨ ∈ × × ×



∪ ∪
   (8) 

Proof. This can be proved similarly as Theorem 3.2. 
The structures of ,S R

TV  and ,T F
SV  from Formula (7) and Formula (8) are shown 

in Figure 4 and Figure 5, respectively. We denote ( ),R R x a y a∧ = ∧ ∧  and 

( ),F F x a y a∨ = ∨ ∨  in these figures. 

Let ( ), ,0,1L ≤  be a bounded lattice and { }\ 0,1a L∈ . Let [ ] [ ]2: ,1 ,1T a a→  
be a t-norm on [ ],1a , [ ] [ ]2: 0, 0,S a a→  be a t-conorm on [ ]0,a . Taking  
( ) ( ), ,R x y S x y=  in Formula (7), we obtain that 

 

 
Figure 4. The frame of ,T F

SV . 
 

 
Figure 5. The frame of ,T F

SV . 
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( )

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ] [ ]

2

2
,

, , if , 0,

, , if , ,1,
, , if , 0, 0,

, otherwise,

S S
T

a a a a

S x y x y a

T x y x y aV x y
S x a y a x y a I I a I I
a

 ∈

 ∈= 

∧ ∧ ∈ × × ×



∪ ∪
 (9) 

which is equal to ( ),S
TV x y  given by Formula (4). 

Dually, taking ( ) ( ), ,F x y T x y=  in Formula (8), we obtain that 

( )

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ] [ ]

2

2
,

, , if , 0,

, , if , ,1,
, , if , ,1 ,1

, otherwise

T T
S

a a a a

S x y x y a

T x y x y aV x y
T x a y a x y a I I a I I
a

 ∈

 ∈= 

∨ ∨ ∈ × × ×



∪ ∪
  (10) 

which is equal to ( ),T
SV x y  given by Formula (5). 

Taking ( ),R x y a=  for all ( ) [ ]2, 0,x y a∈  in Formula (7), then 

( )
( ) ( ) [ ]
( ) ( ) [ ]

2

, 2

, , if , 0,
, , , if , ,1

, otherwise,

S a
T

S x y x y a
V x y T x y x y a

a

 ∈


=  ∈



             (11) 

which is equal to ( ),T S
aV  given by Formula (3). 

Taking ( ),R x y a=  for all ( ) [ ]2, 0,x y a∈  in Formula (8), then it is clear 
that ( ), ,T a

SV x y  also coincides with ( ),T S
aV , which is given by Formula (3). 

Therefore, the two methods proposed in this study are more generalized than 
the methods proposed previously by [10] [11]. Now we give an example to show 
that we can obtain new nullnorms by the construction methods proposed in this 
paper. 

Example 3.4. Let ( ), ,0,1L ≤  be a bounded lattice and let { }\ 0,1a L∈ .  
(i) Let [ ] [ ]2: ,1 ,1T a a→  be a t-norm on [ ],1a  and ,b c L∈  be such that 

c b a≤ ≤ . Let [ ] [ ]2: 0, 0,S a a→  and [ ] [ ]2: 0, 0,R a a→  be two functions on 
[ ]0,a  defined by 

( )
[ ]
[ ]

( ) [ )2

, if 0 and 0,
, if 0 and 0,, =

, if , 0,

x y x a
y x y aS x y
x y c x y a

 = ∈
 = ∈
 ∨ ∨ ∈

            (12) 

and 

( ), .R x y x y b= ∨ ∨                       (13) 

Then S is a t-conorm and R is a t-subconorm on [ ]0,a . It is easy to verify 
S R≤  and the condition (6) holds. Therefore, 

( )

[ ]
[ ]

( ) ( ]
( ) ( ) [ ]

( ) ( ) ( ) [ ] [ ]

2

1 2

, if 0 and 0,
, if 0 and 0,

, if , 0,
,

, , if , ,1
, if , 0, 0,

, otherwise
a a a a

x y x a
y x y a

x y c x y a
V x y

T x y x y a
x a y a b x y a I I a I I

a

 = ∈
 = ∈
 ∨ ∨ ∈= 

∈
 ∧ ∨ ∧ ∨ ∈ × × ×


∪ ∪

 (14) 
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is a nullnorm on L with the zero element a by Theorem 3.2. 
(ii) Dually, let [ ] [ ]2: 0, 0,S a a→  be a t-conorm on [ ]0,a  and ,j k L∈  be 

such that a j k≤ ≤ . Then 2
2 :V L L→  is a nullnorm on L with the zero ele-

ment a by Theorem 3.3, where 

( )

[ ]
[ ]

( ) [ )
( ) ( ) [ ]

( ) ( ) ( ) [ ] [ ]

2

2 2

, if 1 and ,1
, if 1 and ,1

, if , ,1
,

, , if , 0,
, if , ,1 ,1

, otherwise.
a a a a

x y x a
y x y a

x y k x y a
V x y

S x y x y a
x a y a j x y a I I a I I

a

 = ∈
 = ∈
 ∧ ∧ ∈= 

∈
 ∨ ∧ ∨ ∧ ∈ × × ×


∪ ∪

  (15) 

4. Conclusion 

In this study, based on the existing constructions of nullnorms on L, we contin-
ue to study construction methods of nullnorms on bounded lattices. Two me-
thods for obtaining nullnorms on L are presented in this paper. Some examples 
were provided to show that the construction methods proposed in this paper 
generalized the methods presented in previous studies. 
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