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Abstract 
In this paper, a new Fourier-differential transform method (FDTM) based on 
differential transformation method (DTM) is proposed. The method can ef-
fectively and quickly solve linear and nonlinear partial differential equations 
with initial boundary value (IBVP). According to boundary condition, the in-
itial condition is expanded into a Fourier series. After that, the IBVP is trans-
formed to an iterative relation in K-domain. The series solution or exact solu-
tion can be obtained. The rationality and practicability of the algorithm FDTM 
are verified by comparisons of the results obtained by FDTM and the existing 
analytical solutions. 
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1. Introduction 

The differential transform method (DTM) is a powerful approximate analytic 
method for solving linear and nonlinear differential equations. Thus it provides 
widely applicable technique to construct an analytical solution of differential 
equations in a polynomial form. Since the basic idea of the DTM was introduced 
by Pukhov [1], the method has been studied intensely and has substantially grown. 
A large amount of literature about the DTM, its applications and its extensions 
is available, e.g. [2]-[28]. 
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Although being powerful, there still exist some difficulties in solving system of 
differential equations with initial and boundary condition(s) by the DTM. In 
fact, one may note that much of the research on the method is to solve the linear 
and nonlinear ODE with or without initial or boundary condition(s) [3]-[13]. 
Although there are some researches on solution of BVP, the BVP is composed of 
single equation and special initial boundary data [14] [15] [16] [17] [18] [24]. 
The research on solution of the initial boundary value problem of partial diffe-
rential equation system based on DTM is scarce. It is well known that a PDE (a 
system of PDEs) cannot model any real process without additional condition(s) 
on the unknown function(s). On the other hand, boundary-value problems (BVPs) 
based on the relevant PDEs (systems), which reflect general physical laws, describe 
many real processes arising in nature and society. 

The aim of this paper is to extend the differential transformation method to 
solve partial differential equation system with initial and three typical zero 
boundary conditions. According to the characteristics of boundary conditions, 
the initial function is respectively expanded into corresponding Fourier series. 
The method based on the iteration procedure of DTM and Fourier expansion 
technology is called Fourier-differential transform method (FDTM). The me-
thod can be used to evaluate the approximating solution by the finite Taylor se-
ries and by an iteration procedure described by the transformed equations ob-
tained from the original equation using the operations of differential transfor-
mation. 

2. Differential Transform Method 
2.1. One-Dimensional Differential Transform 

The definitions and operations of one-dimensional differential transform me-
thod (DTM) are introduced in [3]-[13]. The basic definitions of the DTM are 
given as follows: 

The differential transform of the kth differentiable function ( )u x  at 0x =  is 
defined by 

( ) ( )
0

1
!

k

k
x

u x
U k

k x
=

∂
=

∂
                      (1) 

where ( )u x  is the original function and ( )U k  is the transformed function. 
The corresponding inverse transform is defined by 

( ) ( )
0

k

k
u x U k x

∞

=

= ∑                        (2) 

Substituting Equation (2) into Equation (1), it can be obtained as 

( ) ( )
0 0

1
!

k
k

k
k x

u x
u x x

k x

∞

= =

∂
=

∂∑                    (3) 

Using the differential transform, a differential equation in the domain of in-
terest can be transformed to be an algebraic equation in the K-domain and ( )u x  
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can be obtained by finite-term Taylor series plus a remainder, 

( ) ( ) ( )1
0 0

1
!

kn
k

nk
k x

u x
u x x R x

k x +
= =

∂
= +

∂∑                  (4) 

Some of the fundamental mathematical operations performed by one-dimen- 
sional differential transform can be obtained in Table 1. 

2.2. Two-Dimensional Differential Transform 

Consider a function of two variables ( ), :u x t R R R× → , based on the properties 
of one-dimensional DTM, if ( ),u x t  is analytic and continuously differentiable 
with respect to variables in the domain of interest, the two-dimensional trans-
form at ( )0,0  are given as follows [18] [20] [22] [24] 

( ) ( )
( )0,0

,1,
! !

i j

i j

u x t
U i j

i j x t

+∂
=

∂ ∂
                     (5) 

The spectrum function ( ),U i j  is the transformed function, which is also 
called the T-function. The function ( ),u x t  is the original function. The diffe-
rential inverse transform of ( ),U i j  is defined as follows. 

( ) ( )
0 0

, , i j

i j
u x t U i j x t

∞ ∞

= =

= ∑∑                      (6) 

Substituting Equation (6) into Equation (5), it can be obtained as 

( ) ( )
( )0 0 0,0

,1,
! !

i j
i j

i j
i j

u x t
u x t x t

i j x t

+∞ ∞

= =

∂
=

∂ ∂
∑∑                (7) 

Unlike the traditional high-order Taylor series method which requires com-
plicated symbolic computations, with this method, the given equation and re-
lated conditions are transformed into a recurrence relation, through which one 
can easily obtain the coefficients of a Taylor series solution.  

The main advantage of the DTM is that it provides an explicit and numerical 
solution with minimal calculations. Another important advantage is that this 
method can be applied directly to nonlinear problems without linearization, dis-
cretization or perturbation. Some of the fundamental mathematical operations 
performed by two-dimensional differential transform can be obtained in Table 
2.  

 
Table 1. One-dimensional differential transform. 

Original function Transformed function 

( ) ( ) ( )1 2u x u x u x= ±  ( ) ( ) ( )1 2U k U k U k= ±  

( ) ( )u x cv x=  ( ) ( )U k cV k=  

( ) ( ) ( )1 2u x u x u x=  ( ) ( ) ( )1 2
0

k

m

U k U m U k m
=

= −∑  

( ) ( )k

k

v x
u x

x
∂

=
∂

 ( ) ( ) ( )!
!

k m
U k V k m

k
+

= +  
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Table 2. Two-dimensional differential transform. 

Original function Transformed function 

( ) ( ) ( )1 2, , ,u x t u x t u x t= ±  ( ) ( ) ( )1 2, , ,U i j U i j U i j= ±  

( ) ( ), ,u x t cv x t=  ( ) ( ), ,U i j cV i j=  

( ) ( ) ( )1 2, , ,u x t u x t u x t=  ( ) ( ) ( )1 2
0 0

, , ,
m n

i j

U i j U i n j U m i j
= =

= − −∑∑  

( ) ( ),
,

v x t
u x t

t
∂

=
∂

 ( ) ( ) ( ), 1 , 1U i j j V i j= + +  

( ) ( ),
,

k

k

v x t
u x t

x
∂

=
∂

 ( ) ( ) ( )!
, ,

!
i k

U i j V i k j
k
+

= +  

( ) ( ),
,

k

k

v x t
u x t

t
∂

=
∂

 ( ) ( ) ( )!
, ,

!
j k

U i j V i j k
k
+

= +  

3. The Fourier-Differential Transform Method (FDTM) 

Many engineering phenomenon are mathematically modeled by categorizing 
them in the initial boundary value problems (IBVPs). In this study, an efficient 
algorithm based upon the differential transform method (DTM) is considered to 
solve the system of partial differential equations with initial and zero boundary 
conditions. In order to illustrate the algorithm, a more general form of equations 
at [ ], , ,x a b a b R∈ ∈  and [ ]0,t∈ ∞  is expressed as 

( )( ) ( ) ( )1, , , 0t xL u x t L u v N u v+ + =                  (8) 

( )( ) ( ) ( )2, , , 0t xL v x t L u v N u v+ + =                  (9) 

with initial conditions 

( ) ( ),0 ,u x f x a x b= < <                     (10) 

( ) ( ),0 ,v x g x a x b= < <                     (11) 

and zero Dirichlet boundary conditions 

( ) ( ), , 0, 0u a t u b t t= = >                     (12) 

( ) ( ), , 0, 0v a t v b t t= = >                     (13) 

or zero Neumann boundary conditions 

0, 0
x a x b

u u t
x x= =

∂ ∂
= = >

∂ ∂
                    (14) 

0, 0
x a x b

v v t
x x= =

∂ ∂
= = >

∂ ∂
                    (15) 

or zero mixed boundary conditions 

( ), 0, 0
x b

uu a t t
x =

∂
= = >
∂

                    (16) 

( ), 0, 0
x b

vv a t t
x =

∂
= = >
∂

                    (17) 
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where, L is liner differential operators, N is nonliner differential operators, the 
vector of main unknown functions, x is spatial variable and t is time.  

On the basis of the DTM, we shall introduce an effective algorithm to obtain 
the approximate solution of Equation (8) under the initial conditions Equation 
(9) and the boundary conditions Equations (12)-(17). The main steps of the al-
gorithm are: 

Step 1, Appling the differential transformation in Equation (8), and an itera-
tive formula is obtained. 

( ) ( )( ), , , 0F U i j V i j =                        (18) 

( ) ( )( ), , , 0G U i j V i j =                        (19) 

where, , 0,1, 2, ,i j N n= − . 
Step 2, Duce ( ),U i j  and ( ),V i j  ( , , 1, ,i j n n N= +  ). According to the 

characteristics of boundary conditions, the initial function is respectively ex-
panded into corresponding Fourier series [29] [30]. The expanded form of the 
initial conditions see Table 3. 

Step 3, Imposing the truncated series solution obtained in Step 2 on the initial 
and boundary conditions, a linear or nonlinear algebraic equations system can 
be obtained by 

( ) ( )( )

( ) ( )( )

1 , , , 0

, , , 0n

g U i j V i j

g U i j V i j

=

=

                      (20) 

where, , 0,1, 2, , 1i j n= − . 
Step 4, Solve system in Step3 to determine ( ),U i j  and ( ),V i j , and substi-

tute the result into the truncated series solution obtained in Step 3 to obtain the 
final result. 

 
Table 3. The corresponding Fourier series of initial function to boundary conditions. 

Boundary conditions The corresponding Fourier series of initial function Coefficient value 

zero Dirichlet boundary 
conditions 

( ) ( )
0

sinn
n

n x a
f x A

b a

∞

=

π − 
=  − 
∑  

( ) ( )
0

sinn
n

n x a
g x A

b a

∞

=

π − 
=  − 
∑   

( ) ( )
0

2 sin d
b a

n

n x a
A f x x

b a b a
− π − 

=  − − 
∫  

( ) ( )
0

2 sin d
b a

n

n x a
A g x x

b a b a
− π − 

=  − − 
∫  

zero Neumann boundary 
conditions 

( ) ( )
0

1

cosn
n

n x a
f x B B

b a

∞

=

π − 
= +  − 

∑  

( ) ( )
0

1

cosn
n

n x a
g x B B

b a

∞

=

π − 
= +  − 

∑   

( ) ( )
0

2 cos d
b a

n

n x a
B f x x

b a b a
− π − 

=  − − 
∫  

( ) ( )
0

2 cos d
b a

n

n x a
B g x x

b a b a
− π − 

=  − − 
∫  

zero mixed boundary  
conditions 

( ) ( ) ( )
0

1 2
sinn

n

n x a
f x C

b a

∞

=

+ π − 
=  − 
∑  

( ) ( ) ( )
( )0

1 2
sin

2n
n

n x a
g x C

b a

∞

=

 + π −
=   − 
∑   

( ) ( ) ( )
0

1 22 sin d
b a

n

n x a
C f x x

b a b a
− + π − 

=  − − 
∫  

( ) ( ) ( )
0

1 22 sin d
b a

n

n x a
C g x x

b a b a
− + π − 

=  − − 
∫  
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4. Expmple 

In order to verify the effectiveness of the above method, three typical initial 
boundary value problems are solved. It should be noted that the following ex-
amples only serve as illustrations and the more complex problems can be tackled 
by the proposed technique, e.g. higher-ordered ODEs, PDEs (system) or other 
functional equations involving nonlinear terms with zero boundary conditions. 

Example 1. The linear heat equation was first considered at [ ]0,1x∈  and 
[ ]0,t∈ ∞  [31]. 

t xxu uα=                             (21) 

with the initial data 

( ),0 1u x = , ( )0,1x∈                       (22) 

and subject to the boundary conditions 

( )0, 0u t = , 0t >                          (23) 

( )1, 0u t = , 0t >                          (24) 

where, 0α >  is constant. 
Based on the FDTM, we have ones 

( ) ( )( ) ( )
1 2

, 1 2,
1

i i
U i j U i j

j
α + +

+ = +
+

              (25) 

For the initial condition, it can be obtained as 

( ) ( )
( ) ( )( )2 1

0 0 0

14 1,0 2 1
2 1 2 1 !

k
ki

i n k
U i x n x

n k

∞ ∞ ∞ +

= = =

−
= + π
π + +∑ ∑ ∑        (26) 

which implies 

( ) ( ) ( )
1

2

0

1 2 14 1,0 , 1,3,5,
2 1 ! 2

i i

n

n
U i i

n i

−
∞

=

− + π 
= = 
π +  
∑         (27) 

From the boundary conditions, we have 

( )
0

0, 0j

j
U j t

∞

=

=∑                        (28) 

( )
0 0

, 0j

j i
U i j t

∞ ∞

= =

=∑∑                       (29) 

which implies 

( )0, 0U j =                          (30) 

( )
0

, 0
i

U i j
∞

=

=∑                         (31) 

Substituting Equation (27), Equation (28) and Equation (30) into Equation 
(25), one has  

( ) ( )
( ) ( )( )

1 2
2 2

0

14, 2 1
! 2 1 !

i j
j

i j

n
U i j n

j n i
α

− +
∞ +

=

−
= + π

+ π∑ , 1,3,5,i =       (32) 
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( ), 0U i j = , 0,2,4,i =                      (33) 

From the definition of inverse differential transform, we get 

( ) ( )
( ) ( )( ) ( ) ( )( )

( )( ) ( )( )( )

2 1 22 1

0 0 0

2

0

14 1, 2 1 1 2 1
2 1 2 1 ! !

4 1 sin 2 1 exp 2 1
2 1

i j
i jji j

n i j

n

u x t n x n t
n i j

n x n t
n

α

α

∞ ∞ ∞+ +

= = =

∞

=

−
= + π − + π
π + +

= + π − + π
π +

∑∑ ∑

∑
(34) 

Note that Equation (2) is often used to describe the law of heat conduction. 
Because its heat conduction coefficient is constant, it belongs to the category of 
linear partial differential equations. For linear partial differential equations, the 
separation variable method is often used to solve, but this paper gives different 
solutions method. The solution obtained by the FDTM converge to the solution 
by separation of variables method [31]. This also confirms the rationality of this 
method. 

Example 2. Partial differential equations with constant coefficients are consi-
dered in this example. 

2

1 2

u V VC
t t x

∂ ∂ ∂
+ =

∂ ∂ ∂
                       (35) 

2

2 3 2

u v vC C
t t x

∂ ∂ ∂
+ =

∂ ∂ ∂
                      (36) 

subject to initial conditions 

( ),0 1u x =  in 0 1x< ≤                     (37) 

( ),0 1v x =  in 0 1x< ≤                     (38) 

and boundary conditions 

( ) ( )0, 0,  0, 0u t v t= =  in 0t >                   (39) 

( ) ( )1, 1,
0,  0

u t v t
x x

∂ ∂
= =

∂ ∂
 in 0t >                   (40) 

where, 1 2 3, ,C C C  are costant coefficient and 1 2 31, 0C C C≠ ≠ . 
Remark: The system described above has been widely used in geotechnical en-

gineering [32]. 
Based on the FDTM, we have ones 

( ) ( )( ) ( ) ( )( ) ( )
( )( )

2 3

1 2

1 2 2, 1 2 2,
, 1

1 1
C i i V i j C i i U i j

U i j
j C C

+ + + − + + +
+ =

+ −
  (41) 

( ) ( )( ) ( ) ( )( ) ( )
( )( )

1 3

1 2

1 2 2, 1 2 2,
, 1

1 1
C C i i U i j i i V i j

V i j
j C C

+ + + − + + +
+ =

+ −
   (42) 

By the initial condition Equation (37) & Equation (38), it can be obtained as 

( ) ( )
( )

( ) 2 1

0 0 0

1 2 14 1,0
2 1 2 1 ! 2

kk
i

i n k

n x
U i x

n k

+
∞ ∞ ∞

= = =

− + π 
=  
π + +  

∑ ∑ ∑        (43) 

( ) ( )
( )

( ) 2 1

0 0 0

1 2 14 1,0
2 1 2 1 ! 2

kk
i

i n k

n x
V i x

n k

+
∞ ∞ ∞

= = =

− + π 
=  
π + +  

∑ ∑ ∑        (44) 
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which implies 

( ) ( ) ( )
1

2

0

1 2 14 1,0 , 1,3,5,
2 1 ! 2

i i

n

n
U i i

n i

−
∞

=

− + π 
= = 
π +  
∑         (45) 

( ) ( ) ( )
1

2

0

1 2 14 1,0 , 1,3,5,
2 1 ! 2

i i

n

n
V i i

n i

−
∞

=

− + π 
= = 
π +  
∑         (46) 

From the boundary conditions Equation (39) & Equation (40), one has  

( ) ( )

( ) ( )

( ) ( )

1 2
0 0

1
0 0

2
0 0

0, 0, 0, 0

1 , 0

1 , 0

j j

j j

j

j i

j

j i

U j t U j t

i U i j t

i U i j t

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =


= =


 + =



+ =


∑ ∑

∑∑

∑∑

              (47) 

which implies 

( ) ( )0, 0, 0, 0U j V j= =                    (48) 

( ) ( )

( ) ( )

0

0

1 1, 0

1 1, 0

i

i

i U i j

i V i j

∞

=

∞

=

 + + =

 + + =


∑

∑
                   (49) 

Substituting Equation (45) & Equation (46) and Equation (48) into Equation 
(41) & Equation (42), and by recursive method, it can be get  

( ) ( ) ( )
( )

( )
1 2 2
2 1

0 1 2

1 2 14 1, , 1,3,5,
2 1 ! 2! 1

i j i j

j
n

a j n
U i j i

n i j C C

− + +
∞

=

− + π 
= = 
π + −  
∑ (50) 

( ) ( ) ( )
( )

( )
1 2 2
2 2

0 1 2

1 2 14 1, , 1,3,5,
2 1 ! 2! 1

i j i j

j
n

a j n
V i j i

n i j C C

− + +
∞

=

− + π 
= = 
π + −  
∑ (51) 

where, ( )1a j , ( )2a j  satisfy the recursive formula 

( ) ( )1j j+ =a Aa                       (52) 

where, ( ) ( ) ( )( )T
1 2,j a j a j=a , 1 3

2 3

1 C C
C C
− 

=  − 
A , ( ) ( )1 20 0 1a a= = ,  

0,1,2,j =  . 

From the Equation (52), we have  

( ) ( )( ) ( )( )
( )

1 1 3 2 1 2 1 3 1 2
1

1 3 1 2

1 1 1 1j jC C C C
a j

C C
λ λ λ λ λ λ

λ λ
+ − − − + − −

=
−

      (53) 

( ) ( ) ( )1 3 2 1 1 3 1 2
2

1 2

1 1j jC C C C
a j

λ λ λ λ
λ λ

− − − − −
=

−
            (54) 

where 1λ  and 2λ  are the eigenvalues of the matrix 1 3

2 3

1 C C
C C
− 

=  − 
A . 
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By using Equation (41) & Equation (42) and Equation (48) & Equation (49), it 
can be obtained as  

( )1 , 0, 0, 2, 4,U i j i= =                      (55) 

( )2 , 0, 0, 2, 4,U i j i= =                      (56) 

According the differential inverse transform of the DTM, we get 

( ) ( ) ( ) ( ) ( )( )
( )

1 2
2 1

0 1,3,5, 0 1 2

2 11 2 14 1,
2 1 ! 2 ! 4 1

ji i

n i j

nn a j
u x t x t

n i j C C

−
∞ ∞

= = =

 − + π− + π   =  
π + −    
∑ ∑ ∑



(57) 

( ) ( ) ( ) ( ) ( )( )
( )

1 2
2 2

0 1,3,5, 0 1 2

2 11 2 14 1,
2 1 ! 2 ! 4 1

ji i

n i j

nn x a j
v x t t

n i j C C

−
∞ ∞

= = =

 − + π− + π   =  
π + −    
∑ ∑ ∑



(58) 

It shoud be noted that the series expression of a sine function is  

( ) ( )
1

2

1,3,5,

1
sin

!

i

i

i
x x

i

−

=

−
= ∑



, therefore the Equation (57) & Equation (58) can be 

rewritten as  

( ) ( )1 2
1 2

0

2 1e e4, sin
2 1 2

A t A t

n

nB Bu x t x
n

∞

=

+ π +
=  
π +  
∑          (59) 

( ) ( )1 2
1 2

0

2 1e e4, sin
2 1 2

A t A t

n

nD Dv x t x
n

∞

=

+ π +
=  
π +  
∑          (60) 

where 
( )( )
( )

2

1 1
1 2

2 1
4 1

n
A

C C
λ

− + π
=

−
, 

( )( )
( )

2

2 2
1 2

2 1
4 1

n
A

C C
λ

− + π
=

−
,  

( )( )
( )

1 1 3 2
1

1 3 1 2

1 1C C
B

C C
λ λ

λ λ
+ − −

=
−

, 
( )( )

( )
2 1 3 1

2
1 3 1 2

1 1C C
B

C C
λ λ

λ λ
− + − −

=
−

, 1 3 2
1

1 2

1C C
D

λ
λ λ
− −

=
−

, 

( )1 3 1
2

1 2

1C C
D

λ
λ λ

− − −
=

−
.  

Example 3. Consider the nonlinear system: coupled Burgers’ equations at the 
interval [ ]0,x∈ π  and [ ]0,t∈ ∞ . 

( )2 0t xx x xu u uu uv− − + =                  (61) 

( )2 0t xx x xv v vv uv− − + =                    (62) 

with the initial condition 

( ) ( )0, sinu x x=                        (63) 

( ) ( )0, sinv x x=                        (64) 

and the zero Dirichlet boundary conditions 

( ),0 0u t = , ( ), 0u t π =                     (65) 

( ),0 0v t = , ( ), 0v t π =                     (66) 

From the FDTM, it can be obtained as 
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( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

1 , 1 1 2 2,

2 , 1 1,

1 1, ,

1 1, , 0

ji

r s
ji

r s
ji

r s

j U i j i i U i j

U r j s i r U i r s

r U r j s V i r s
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= =

= =

= =

+ + − + + +

− − − + − +

+ + + − −

+ + + − − =

∑∑

∑∑
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           (67) 

( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

1 , 1 1 2 2,

2 , 1 1,

1 1, ,

1 1, , 0

ji

r s
ji

r s
ji
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j V i j i i V i j

V r j s i r V i r s

r U r j s V i r s

r V r j s U i r s

= =

= =

= =

+ + − + + +

− − − + − +
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+ + + − − =

∑∑

∑∑

∑∑

           (68) 

For the initial conditions, we get  

( ) ( )
1

2
11 ,

,0 !
0,

i
i odd

U i i
i even

− − ∈= 
 ∈

                 (69) 

( ) ( )
1

2
11 ,

,0 !
0,

i
i odd

V i i
i even

− − ∈= 
 ∈

                 (70) 

For the boundary conditions, we get 

( )0, 0U j = , ( )
0

, 0
i

U i j
∞

=

=∑                   (71) 

( )0, 0V j = , ( )
0

, 0
i

V i j
∞

=

=∑                   (72) 

Then, one has 

( )
( ) ( )

1
21 1

,, ! !
0,

i j

i oddU i j i j
i even

− − − ∈= 


∈

               (73) 

( )
( ) ( )

1
21 1

,, ! !
0,

i j

i oddV i j i j
i even

− − − ∈= 


∈

               (74) 

so the solution for the Equations (61)-(66) are 

( ) ( )
( )

( )
0 0

1 1
,

2 1 ! !

i j
i j

j i
u x t x t

i j

∞ ∞

= =

− −
=

+∑∑               (75) 

( ) ( )
( )

( )
0 0

1 1
,

2 1 ! !

i j
i j

j i
v x t x t

i j

∞ ∞

= =

− −
=

+∑∑               (76) 

i.e. 
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( ) ( ) ( ), sin expu x t x x= −                   (77) 

( ) ( ) ( ), sin expv x t x x= −                   (78) 

5. Conclusion 

In this paper, we propose an FDTM algorithm based on the differential trans-
formation method and Fourier expansion technology, which can solve the IBVP 
system with three kinds of typical zero boundary. Especially the discontinuous 
boundary can be effectively solved. Finally, the heat conduction equation with 
discontinuous boundary conditions is solved by the algorithm. The partial diffe-
rential equations described dissipation law of pore pressure which widely ap-
plied in engineering are solved according to the FDTM. In addition, nonlinear 
coupled Burgers’ equations with the zero Dirichlet boundary conditions can also 
be analytically solved by the method. The results are consistent with the existing 
analytical solutions. It shows that the algorithm is effective and reasonable. The 
algorithm can be extended to complex initial boundary value problems. 
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