Effect of Annealing Temperature and Atmosphere to Surface Solid Phase Reaction of Sapphire Substrates and Spin-Coated Copper Nitrate Gel Films

HTML  XML Download Download as PDF (Size: 368KB)  PP. 1-10  
DOI: 10.4236/msce.2018.65001    658 Downloads   1,536 Views  
Author(s)

ABSTRACT

The solid-phase reaction of sapphire (Al2O3) substrates and spin-coated copper nitrate films was studied. X-ray diffraction analysis revealed that a CuO fraction was observed by annealing at temperatures higher than 800℃. In addition, crystalline CuAlO2 was formed at annealing temperatures in the range of 900℃ – 1000℃ by solid-phase reaction of the spin-coated films and sapphire substrate. Crystalline CuAlO2 was formed by annealing at 1000℃ for 5 - 10 h, and CuAl2O4 was formed by annealing at 1000℃ for 15 h. When annealing under N2 flow, Cu2O was observed rather than CuAlO2. For a sample annealed in air at 1000℃ for 5 h, X-ray photoelectron spectroscopy measurements at various depths from surface revealed that Cu2+ ions are located around the surface, which suggests that the CuO fraction is present near the surface while the CuAlO2 fraction is located at greater depths from the surface of the samples. The depth profile of the sample suggests that there is no pure CuAlO2 layer in the sample, but that crystalline CuAlO2 is present in the sample as a mixture with CuO and Al2O3.

Share and Cite:

Ehara, T. (2018) Effect of Annealing Temperature and Atmosphere to Surface Solid Phase Reaction of Sapphire Substrates and Spin-Coated Copper Nitrate Gel Films. Journal of Materials Science and Chemical Engineering, 6, 1-10. doi: 10.4236/msce.2018.65001.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.