Crystallization Kinetics of Poly(3-hydroxybutyrate) Granules in Different Environmental Conditions

HTML  Download Download as PDF (Size: 1124KB)  PP. 301-310  
DOI: 10.4236/jbnb.2011.23037    5,780 Downloads   10,259 Views  Citations
Author(s)

Affiliation(s)

.

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is a natural biopolyester accumulated in microbial cells as tiny amorphous granules. The nano- micro-particles have a variety of potential applications and behave differently in different environments. In this work, the in situ crystallization of native PHB granules was investigated under different environmental conditions. The isothermal crystallization kinetics of the granules was shown to follow Avrami’s equation. The model parameter describing crystal growth is a function of temperature or pH and estimated from in situ crystallization measurements with attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Empirical equations describing crystal growth are derived for the parameter values. PHB granules heated at 80-140°C in acidic solution (pH 2) up to 4 hr showed an increase in crystallinity from about 5% to 35% and moderate particle aggregation. PHB granules suspended in alkaline solutions (pH 9-12) at room temperature up to 4 hr showed an increase in crystallinity up to 45% and very little particle aggregation. It was found that the amorphousness of PHB granules in vivo is stabilized by water, lipids and proteins. Upon removal of these impurities, partial crystallization is induced which may inhibit extensive particle aggregation.

Share and Cite:

M. Porter and J. Yu, "Crystallization Kinetics of Poly(3-hydroxybutyrate) Granules in Different Environmental Conditions," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 3, 2011, pp. 301-310. doi: 10.4236/jbnb.2011.23037.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.