Thermophysical Properties of NaCl, NaBr and NaF by γ-Ray Attenuation Technique

Abstract

The γ-ray densitometer has been designed and fabricated in our laboratory and carried out studies on temperature dependent γ-ray attenuation and thermo physical properties of NaCl, NaBr and NaF. The linear attenuation coefficients (μl) for the pellets of NaCl, NaBr and NaF as a function of temperature have been determined. The coefficients of temperature dependence of density have been reported. The variation of density and thermal expansion of NaCl, NaBr and NaF in the temperature range of 300 K - 1000 K have been studied and compared with results available in the literature. The temperature dependence of density and thermal expansion has been represented by linear equations. Volume thermal expansion coefficients have been reported.

Share and Cite:

A. Rao, K. Narender, K. Rao and N. Krishna, "Thermophysical Properties of NaCl, NaBr and NaF by γ-Ray Attenuation Technique," Journal of Modern Physics, Vol. 4 No. 2, 2013, pp. 208-214. doi: 10.4236/jmp.2013.42029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. E. Straumanis and A. Levins, “The Thermal Expansion of Bismuth by X-Ray Measurements,” Journal of Inorganic and General Chemistry, Vol. 238, 1938, p. 175.
[2] K. K. Srivastava and H. D. Merchant, “Thermal Expansion of Alkali Hallides above 300 K,” Journal of Physics and Chemistry of Solids, Vol. 34, No. 12, 1973, pp. 2069-2073. doi:10.1016/S0022-3697(73)80055-1
[3] V. T. Deshpande, “Thermal Expansion of Sodium Flouride and Sodium Bromide,” Acta Crystallographica, Vol. 14, 1961, p. 794. doi:10.1107/S0365110X61002357
[4] G. K. White, “The Thermal Expansion of Alkali Hallides at Low Temperatures,” Proceedings of the Royal Society of London A, Vol. 286, No. 1405, 1965, pp. 204-217. doi:10.1098/rspa.1965.0139
[5] G. K. White and J. G. Collins, “The Thermal Expansion of Alkali Halides at Low Temperatures. II. Sodium, Rubidium and Caesium Halides,” Proceedings of the Royal Society of London A, Vol. 333, No. 1593, 1973, pp. 237-259. doi:10.1098/rspa.1973.0060
[6] P. P. M. Meincke and G. M. Graham, “The Thermal Expansion of Alkali Halides,” Canadian Journal of Physics, Vol. 43, No. 10, 1965, pp. 1853-1866.
[7] A. M. Sherry and M. Kumar, “Analysis of Thermal Expansion for Alkalihalide Crystals Using the Isobaric Equation of State,” Journal of Physics and Chemistry of Solids, Vol. 52, No. 9, 1991, pp. 1145-1148. doi:10.1016/0022-3697(91)90047-4
[8] M. Kumar and S. P. Upadhyay, “Analysis of the Thermal Expansion Coefficient and It’S Temperature Dependence for Alkali Halides,” Physical Status Solidi (B), Vol. 181, No. 1, 1994, pp. 55-61.
[9] K. Wang and R. R. Reeber, “Thermal Expansion of Alkali Halides at High Pressure: NaCl as an Example,” Physics and Chemistry of Minerals, Vol. 23, No. 6, 1996, pp. 254-360. doi:10.1007/BF00199501
[10] M. Kumar and S. P. Upadhyay, “Pressure Dependence of Thermal Expansivity for Alkali Halides,” Journal of Physics and Chemistry of Solids, Vol. 54, No. 6, 1993, pp. 773-777. doi:10.1016/0022-3697(93)90140-M
[11] J. F. Vetelino, K. V. Namjoshi and S. S. Mitra, “Mode-Gruneisen Parameters and Thermalexpansion Coefficient of NaCl, CsCl, and Zinc-Blende-Type Crystals,” Journal of Applied Physics, Vol. 1, 1973, pp. 5141-5144.
[12] L. M. Thomas and J. Shanker, “Temperature Dependence of Elastic Constants and Thermal Expansion Coefficient for NaCl Crystals,” Physica Status Solidi (B), Vol. 195, No. 2, 2006, pp. 361-366
[13] Z.-H. Fang, “Temperature Dependence of Inter Atomic Separation for Alkali Halides,” Physica Status Solidi (B), Vol. 241, No. 13, 2004, pp. 2886-2892.
[14] C. H. Nie, S. Y. Huang and W. Huang, “Temperature Dependence of Anderson Gruneisen Parameter for NaCl,” Applied Physics Research, Vol. 2, No. 1, 2010.
[15] W. D. Drotning, “Thermal Expansion of Solids at High Temperatures by the Gamma Attenuation Technique,” Review of Scientific Instruments, Vol. 50, No. 12, 1979, Article ID: 121567.
[16] W. D. Drotning, “Thermal Expansion of the Group IIb Liquid Metals Zinc, Cadmiumand Mercury,” Journal of the Less-Common Metals, Vol. 96, 1984, pp. 223-227. doi:10.1016/0022-5088(84)90198-X
[17] P. D. Pathak and N. G. Vasavada, “Thermal Expansion of NaCl, KCl and CsBr by X-Ray Diffraction and the Law of Corresponding States,” Acta Crystallographica Section A, Vol. 26, Part 6, 1970, pp. 655-658. doi:10.1107/S0567739470001602
[18] K. Sunil and B. S. Sharma, “Thermoelastic Properties of Alkali Halides at High Temperatures,” Indian Journal of Pure and Applied Physics, Vol. 50, No. 6, 2012, pp. 387-397.
[19] S. K. Srivatsava and P. Sinha, “Analysis of Thermal Expansion of NaCl and KCl Crystals,” Indian Journal of Physics, Vol. 85, No. 8, 2011, pp. 1257-1265.
[20] S. K. Srivatsava, P. Sinha and M. Panwar, “Thermal Expansivity and Isothermal Bulk Modulus of Ionic Materials at High Temperatures,” Indian Journal of Pure and Applied Physics, Vol. 47, 2009, pp. 175-179.
[21] J. E. Rapp and H. D. Merchant, “Thermal Expansion of Alkali Halides from 70 to 570 K,” Journal of Applied Physics, Vol. 44, No. 9, 1973, pp. 3919-3923.
[22] P. D. Pathak, J. M. Trivedi and N. G. Vasavada, “Thermal Expansion of NaF and RbBr and Temperature Variation of the Frequency Spectrum of NaF,” Acta Crystallographica Section A, Vol. 29, No. A29, 1973, pp. 477-479.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.