Pyrometallurgical Removal of Arsenic from Electrostatic Precipitators Dusts of Copper Smelting

HTML  XML Download Download as PDF (Size: 2459KB)  PP. 545-565  
DOI: 10.4236/jmmce.2021.96036    488 Downloads   1,369 Views  Citations

ABSTRACT

This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace. The generation of dust in the copper smelting worldwide ranges from 2 - 15 wt% per ton of a copper concentrate. In Chile, copper smelters produce approximately 110 kt/y of dust with a concentration of arsenic between 1 and 15 wt%. The dust is a complex of metals oxides and sulfurs with copper concentrations greater than 10 wt% and relatively high silver concentrations. Since its high arsenic concentration, it is difficult to recover valuable metals through hydrometallurgical processes or by direct recirculation of the dust in a smelting furnace. Thus, the development of pyrometallurgical processes aimed at reducing the concentration of arsenic in the dust (<0.5 wt%) is the main objective of this study, giving particular attention to the production of a suitable material to be recirculated in operations of copper smelting. The work provides a detailed characterization of the dust including the Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), Scanning Electron Microscope-Energy Dispersive X-ray Analysis (SEM/EDS), X-Ray Diffraction (XRD), the elemental chemical analysis using Atomic Adsorption (AAS), and X-Ray Fluorescence (X-RF). By considering that arsenic volatilization requires a process of sulfidation-decomposition-oxidation, this work seeks to explore the roasting of mixtures of copper concentrate/dust, sulfur/dust, and pyrrhotite/dust. By the elemental chemical analysis of the mixture after and before the roasting process, the degree of arsenic volatilization was determined. The results indicated the effects of parameters such as roasting temperature, gas flow, gas composition, and the ratio of mixtures (concentrate/dust, sulfur/dust, or pyrrhotite/dust) on the volatilization of arsenic. According to the findings, the concentration of arsenic in the roasted Flash Smelting dust can be reduced to a relatively low level (<0.5 wt%), which allows its recirculation into an smelting process.

Share and Cite:

Henao, H. , Paredes, I. , Diaz, R. and Ortiz, J. (2021) Pyrometallurgical Removal of Arsenic from Electrostatic Precipitators Dusts of Copper Smelting. Journal of Minerals and Materials Characterization and Engineering, 9, 545-565. doi: 10.4236/jmmce.2021.96036.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.