Exact Quantized Momentum Eigenvalues and Eigenstates of a General Potential Model

HTML  XML Download Download as PDF (Size: 1524KB)  PP. 1434-1447  
DOI: 10.4236/jamp.2020.87109    452 Downloads   1,193 Views  Citations

ABSTRACT

We obtain the quantized momentum eigenvalues, Pn, and the momentum eigenstates for the space-like Schr?dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.

Share and Cite:

Farout, M. , Bassalat, A. and Ikhdair, S. (2020) Exact Quantized Momentum Eigenvalues and Eigenstates of a General Potential Model. Journal of Applied Mathematics and Physics, 8, 1434-1447. doi: 10.4236/jamp.2020.87109.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.