Scrutinizing the atmospheric greenhouse effect and its climatic impact
Gerhard Kramm, Ralph Dlugi
.
DOI: 10.4236/ns.2011.312124   PDF    HTML     21,650 Downloads   47,901 Views   Citations

Abstract

In this paper, we scrutinize two completely different explanations of the so-called atmospheric greenhouse effect: First, the explanation of the American Meteorological Society (AMS) and the World Meteorological Organization (W?MO) quan- tifying this effect by two characteristic temperatures, secondly, the explanation of Ramanathan et al. [1] that is mainly based on an energy-flux budget for the Earth-atmosphere system. Both explanations are related to the global scale. In addition, we debate the meaning of climate, climate change, climate variability and climate variation to outline in which way the atmospheric greenhouse effect might be responsible for climate change and climate variability, respectively. In doing so, we distinguish between two different branches of climatology, namely 1) physical climatology in which the boundary conditions of the Earth-atmosphere system play the dominant role and 2) statistical climatology that is dealing with the statistical description of fortuitous weather events which had been happening in climate periods; each of them usually comprises 30 years. Based on our findings, we argue that 1) the so-called atmospheric greenhouse effect cannot be proved by the statistical description of fortuitous weather events that took place in a climate period, 2) the description by AMS and W?MO has to be discarded because of physical reasons, 3) energy-flux budgets for the Earth-atmosphere system do not provide tangible evidence that the atmospheric greenhouse effect does exist. Because of this lack of tangible evidence it is time to acknowledge that the atmospheric greenhouse effect and especially its climatic impact are based on meritless conjectures.

Share and Cite:

Kramm, G. and Dlugi, R. (2011) Scrutinizing the atmospheric greenhouse effect and its climatic impact. Natural Science, 3, 971-998. doi: 10.4236/ns.2011.312124.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R. and Schlesinger, M. (1987) Climate-chemical interactions and effects of changing atmospheric trace gases. Reviews of Geophysics, 25, 1441-1482. doi:10.1029/RG025i007p01441
[2] Gerlich, G. and Tscheuschner, R.D. (2009) Falsi?cation of the atmospheric CO2 greenhouse effects within the frame of physics. International Journal of Modern Physics B, 23, 275-364. doi:10.1142/S021797920904984X
[3] Halpern, J.B., Colose, C.M., Ho-Stuart, C., Shore, J.D., Smith, A.P. and Zimmermann, J. (2010) Comment on “Falsification of the atmospheric CO2 greenhouse effects within the frame of physics”. International Journal of Modern Physics B, 24, 1309-1332. doi:10.1142/S021797921005555X
[4] Gerlich, G. and Tscheuschner, R.D. (2010) Reply to “comment on ‘falsification of the atmospheric CO2 greenhouse effects within the frame of physics’ by Joshua B. Halpern, Christopher M. Colose, Chris Ho- Stuart, Joel D. Shore, Arthur P. Smith, Jorg Zimmermann”. International Journal of Modern Physics B, 24, 1333- 1359. doi:10.1142/S0217979210055573
[5] Planck, M. (1913) Vorlesungen über die Theorie der W?rmestrahlung. Verlag Johann Ambrosius Barth, Leipzig.
[6] Fortak, H. (1979) Entropy and climate. In: Bach, W., Pankrath, J. and Kellogg, W., Eds., Man’s impact on climate. Elsevier Scientific Publishing Company, Amsterdam/Oxford/New York, pp. 1-14.
[7] Zhang, Z.M. and Basu, S. (2007) Entropy flow and generation in radiative transfer between surfaces. International Journal of Heat and Mass Transfer, 50, 702-712. doi:10.1016/j.ijheatmasstransfer.2006.07.009
[8] Stephens, G.L. and Obrien, D.M. (1993) Entropy and climate. I: Erbe observations of the entropy production of the Earth. Quarterly Journal of the Royal Meteorological Society, 119, 121-152. doi:10.1002/qj.49711950906
[9] Wright, S.E., Scott, D.S., Haddow, J.B. and Rosen, M.A. (2001) On the entropy of radiative heat transfer in engineering thermodynamics. International Journal of Engineering Science, 39, 1691-1706. doi:10.1016/S0020-7225(01)00024-6
[10] Monin, A.S. and Shishkov, Y.A. (2000) Climate as a problem in physics. Uspekhi Fizicheskikh Nauk, 170, 419-445. doi:10.3367/UFNr.0170.200004d.0419
[11] Sch?nwiese, C.-D. (2005), Globaler und regionaler Klimawandel—Eine aktuelle wissenschaftliche übersicht. J.-W. Goethe University, Fankfurt, Germany.
[12] Gerlich, G. (2005), Zur Physik und Mathematik globaler Klimamodelle. In: Presentation before the Theodor- Heuss-Akademie, Gummersbach, Germany.
[13] Hantel, M. (1997) Klimatologie. Bergmann, schaefer— Lehrbuch der Experimentalphysik, Band 7, Erde und Planeten. Walter de Gruyter, Berlin/New York, pp. 311- 426.
[14] Peel, M.C., Finlayson, B.L. and Mcmahon, T.A. (2007) Updated world map of the K?ppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633-1644. doi:10.5194/hess-11-1633-2007
[15] Liou, K.N. (2002) An introduction to atmospheric radiation—Second edition. Academic Press, San Diego, CA.
[16] Loutre, M.F., Paillard, D., Vimeux, F. and Cortijo, E. (2004) Does mean annual insolation have the potential to change the climate? Earth and Planetary Science Letters, 221, 1-14. doi:10.1016/S0012-821X(04)00108-6
[17] Berger, A. (1978) Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences, 35, 2362-2367. doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
[18] Berger, A. (1988) Milankovitch theory and climate. Reviews of Geophysics, 24, 624-657.
[19] Mittelstaedt, P. (1970) Klassische mechanik. Bibliographisches Institut, Mannheim, Germany.
[20] Greiner, W. (1977) Theoretische physik, band 1, mechanik I. Verlag Harry Deutsch, Frankfurt am Main, Germany.
[21] Kramm, G. and Dlugi, R. (2010) On the meaning of feedback parameter, transient climate response and the greenhouse effect: Basic considerations and the discussion of uncertainties. The Open Atmospheric Science Journal, 4, 137-159. doi:10.2174/1874282301004010137
[22] Kondratyev, K.Y. (1969) Radiation in the Atmosphere. Academic Press, New York/London.
[23] Iqbal, M. (1983) An introduction to solar radiation. Academic Press Canada.
[24] Haltiner, G.J. and Martin, F.L. (1957) Dynamical and physical meteorology. McGraw-Hill Book Company, New York/Toronto/London.
[25] M?ller, F. (1973) Einführung in die Meteorologie. Bibliographisches Institut, Mannheim/ Wien/Zürich.
[26] Vardavas, I.M. and Taylor, F.W. (2007) Radiation and climate. Oxford University Press, Oxford, U.K. doi:10.1093/acprof:oso/9780199227471.001.0001
[27] Petty, G.W. (2004) A first course in atmospheric radiation. Sundog Publishing, Madison, WI.
[28] Bohren, C.F. and Clothiaux, E.E. (2006) Fundamentals of atmospheric radiation. Wiley-VCH, Berlin, Germany. doi:10.1002/9783527618620
[29] Planck, M. (1901) Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 4, 553-563. doi:10.1002/andp.19013090310
[30] Goody, R.M. and Yung, Y.L. (1989) Atmospheric radiation: Theoretical basis. Oxford University Press, New York/Oxford.
[31] Fortak, H. (1971) Meteorologie. Deutsche Buch-Gemeinschaft, Berlin/Darmstadt/Wien.
[32] Peixoto, J.P. and Oort, A.H. (1992) Physics of climate. American Institute of Physics, New York.
[33] Milankovitch, M. (1941) Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Section of Mathematical and Natural Sciences, 33, Belgrade.
[34] Bretagnon, P. (1974) Termes a longues periodes dans le systeme solaire. Astronomy & Astrophysics, 30, 141-154.
[35] Lindzen, R.S. (1994) Climate dynamics and global change. Annual Review of Fluid Mechanics, 26, 353-378. doi:10.1146/annurev.fl.26.010194.002033
[36] Crowley, T.J. and North, G.R. (1991) Paleoclimatology. Oxford University Press, New York.
[37] Budó, A. (1990) Theoretische Mechanik. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.
[38] Bretagnon, P., Fienga, A. and Simon, J.L. (2003) Expressions for precession consistent with the IAU 2000A model—Considerations about the ecliptic and the Earth Orientation Parameters. Astronomy & Astrophysics, 400, 785-790. doi:10.1051/0004-6361:20021912
[39] Capitaine, N., Wallace, P.T. and Chapront, J. (2005) Improvement of the IAU 2000 precession model. Astronomy & Astrophysics, 432, 355-367.
[40] Hilton, J.L., Capitaine, N., Chapront, J., Ferrandiz, J.M., Fienga, A., Fukushima, T., Getino, J., Mathews, P., Simon, J.-L., Soffel, M., Vondrak, J., Wallace, P. and Williams, J. (2006) Report of the international astronomical union division I. Working group on precession and the ecliptic. Celestial Mechanics and Dynamical Astronomy, 94, 351-367. doi:10.1007/s10569-006-0001-2
[41] Berger, A. and Loutre, M.F. (1991) Insolation values for the climate of the last 10000000 years. Quaternary Science Reviews, 10, 297-317. doi:10.1016/0277-3791(91)90033-Q
[42] Berger, A., Loutre, M.F. and Tricot, C. (1993) Insolation and earths orbital periods. Journal of Geophysical Research-Atmospheres, 98, 10341-10362. doi:10.1029/93JD00222
[43] Brasseur, G.P. and Solomon, S. (2005) Aeronomy of the middle atmosphere. Springer, Dordrecht, The Netherlands.
[44] Trenberth, K.E., Fasullo, J.T. and Kiehl, J. (2009) Earth’s global energy budget. Bulletin of the American Meteorological Society, 90, 311-323. doi:10.1175/2008BAMS2634.1
[45] Zipser, E.J. (2003) Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Meteorological Monographs, 29, 49-58.
[46] Tao, W.-K., Halverson, J., Lemone, M., Adler, R., Garstang, M., Houze Jr., R., Pielke Sr., R.A. and Woodley, W. (2003) The research of Dr. Joanne Simpson: Fifty years investigating hurricanes, tropical clouds and cloud systems. Meteorological Monographs, 29, 1-15.
[47] Fierro, A.O., Simpson, J., Lemone, M.A., Straka, J.M. and Smull, B.F. (2009) On how hot towers fuel the hadley cell: An observational and modeling study of line- organized convection in the equatorial trough from TOGA COARE. Journal of the Atmospheric Sciences, 66, 2730-2746. doi:10.1175/2009JAS3017.1
[48] Lindzen, R.S. and Pan, W. (1993) A note on orbital control of equator-pole heat fluxes. Climate Dynamics, 10, 49-57. doi:10.1007/BF00210336
[49] Kidder, S.Q. and Vonder Haar, T.H. (1995) Satellite meteorology. Academic Press, San Diego/New York/Boston/ London/Sydney/Tokyo/Toronto.
[50] Deardorff, J.W. (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research, 83C, 1889-1903. doi:10.1029/JC083iC04p01889
[51] Mccumber, M.C. (1980) A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulation. University of Virginia, Charlottesville.
[52] Pielke, R.A. (1984) Mesoscale Meteorological Modeling. Academic Press, Orlando, FL.
[53] Meyers, T. and Paw U, K.T. (1986) Testing of a higher- order closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteorology, 37, 297-311. doi:10.1007/BF00122991
[54] Meyers, T. and Paw U, K.T. (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agricultural and Forest Meteorology, 41, 143-163. doi:10.1016/0168-1923(87)90075-X
[55] Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A. (1986) A simple biosphere model (Sib) for use within general- circulation models. Journal of the Atmospheric Sciences, 43, 505-531. doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
[56] Braud, I., Dantasantonino, A.C., Vauclin, M., Thony, J.L. and Ruelle, P. (1995) A simple soil-plant-atmosphere transfer model (Sispat) development and field verification. Journal of Hydrology, 166, 213-250. doi:10.1016/0022-1694(94)05085-C
[57] Kramm, G., Beier, N., Foken, T., Muller, H., Schroder, P. and Seiler, W. (1996) A SVAT scheme for NO, NO2 and O3—Model description and test results. Meteorology and Atmospheric Physics, 61, 89-106. doi:10.1007/BF01029714
[58] Kramm, G., Dlugi, R., Müller, H. and Paw U, K.T. (1998) Numerische untersuchungen zum austausch von impuls, sensibler w?rme und masse zwischen atmosph?re und hoher vegetation. Annalen der Meteorologie, 37, 475- 476.
[59] Ziemann, A. (1998) Numerical simulation of meteorological quantities in and above forest canopies. Meteorologische Zeitschrift, 7, 120-128.
[60] Su, H.B., Shaw, R.H. and Paw U, K.T. (2000) Two-point correlation analysis of neutrally stratified flow within and above a forest from large-eddy simulation. Boundary- Layer Meteorology, 94, 423-460. doi:10.1023/A:1002430213742
[61] Pyles, R.D., Weare, B.C. and Paw U, K.T. (2000) The UCD advanced canopy-atmosphere-soil algorithm: Com- parisons with observations from different climate and vegetation regimes. Quarterly Journal of the Royal Meteorological Society, 126, 2951-2980. doi:10.1002/qj.49712656917
[62] Pyles, R.D., Weare, B.C., Paw, U. K.T. and Gustafson, W. (2003) Coupling between the University of California, Davis, Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) and MM5: Preliminary results for July 1998 for western North America. Journal of Applied Meteorology, 42, 557-569. doi:10.1175/1520-0450(2003)042<0557:CBTUOC>2.0.CO;2
[63] M?lders, N., Haferkorn, U., D?ring, J. and Kramm, G. (2003) Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part I: Description of the model and impact of long-wave radiation, roots, snow and soil frost. Meteorology and Atmospheric Physics, 84, 115-135. doi:10.1007/s00703-002-0578-2
[64] M?lders, N., Haferkorn, U., D?ring, J. and Kramm, G. (2003) Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part II: Evaluation, sensitivity and uncertainty. Meteorology and Atmospheric Physics, 84, 137-156. doi:10.1007/s00703-002-0596-0
[65] Pal Arya, S. (1988) Introduction to micrometeorology. Academic Press, San Diego/New York/Boston/London/ Sydney/Tokyo/Toronto.
[66] Stefan, J. (1879) über die beziehung zwischen der w?rmestrahlung und der temperatur. Wiener Ber. II, 79, 391-428.
[67] Boltzmann, L. (1884) Ableitung des stefan’schen gesetzes, betreffend die abh?ngigkeit der w?rmestrahlung von der temperatur aus der electromagnetischen lichttheorie. Wiedemann’s Annalen, 22, 291-294.
[68] Kramm, G. and M?lders, N. (2009) Planck’s blackbody radiation law: Presentation in different domains and determination of the related dimensional constants. Journal of the Calcutta Mathematical Society, 5, 27-61.
[69] Harmel, R.D., Richardson, C.W., Hanson, C.L. and Johnson, G.L. (2002) Evaluating the adequacy of simulating maximum and minimum daily air temperature with the normal distribution. Journal of Applied Meteorology, 41, 744-753. doi:10.1175/1520-0450(2002)041<0744:ETAOSM>2.0.CO;2
[70] M?ller, F. (1964) Optics of the lower atmosphere. Applied Optics, 3, 157-166. doi:10.1364/AO.3.000157
[71] Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. (1984) Climate sensitivity: Analysis of feedback mechanisms. In: Hansen, J.E. and Takahashi, T., Eds., Climate processes and climate Sensitivity. American Geophysical Union, Washington D.C., pp. 130-163. doi:10.1029/GM029p0130
[72] Hartmann, D.L. (1994) Global physical climatology. Academic Press, San Diego.
[73] Cremers, C.J., Birkebak, R.C. and White, J.E. (1971) Lunar surface temperature at tranquility base. AIAA Journal, 9, 1899-1903. doi:10.2514/3.50000
[74] Mukai, T., Tanaka, M., Ishimoto, H. and Nakamura, R. (1997) Temperature variations across craters in the polar regions of the Moon and Mercury. Advances in Space Research, 19, 1497-1506. doi:10.1016/S0273-1177(97)00348-7
[75] Vasavada, A.R., Paige, D.A. and Wood, S.E. (1999) Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179-193. doi:10.1006/icar.1999.6175
[76] Budyko, M.I. (1977) Climatic change. American Geophysical Union, Washington D.C.
[77] Kramm, G., Dlugi, R. and Zelger, M. (2009) Comments on the “Proof of the atmospheric greenhouse effect” by Arthur P. Smith. http://arxiv.org/abs/0904.2767v3
[78] Monstein, C. (2001) The Moon’s temperature at l = 2.77 cm. ORION, 4.
[79] Piddington, J.H. and Minnett, H.C. (1949) Microwave thermal radiation from the Moon. Australian Journal of Scientific Research A, 2, 63-77.
[80] Pierrehumbert, R.T. (2011) Infrared radiation and planetary temperature. Physics Today, 64, 33-38. doi:10.1063/1.3541943
[81] Lacis, A.A., Schmidt, G.A., Rind, D. and Ruedy, R.A. (2010) Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 330, 356-359. doi:10.1126/science.1190653
[82] Wien, W. (1896) Ueber die energieverteilung im emissionsspectrum eines schwarzen k?rpers. Annalen der Physik, 58, 662-669.
[83] Wien, W. (1894) Temperatur und entropie der strahlung. Annalen der Physik, 52, 132-165. doi:10.1002/andp.18942880511
[84] Dines, W.H. (1917) The heat balance of the atmosphere. Quaterly Journal of the Royal Meteorological Society, 43, 151-158. doi:10.1002/qj.49704318203
[85] M?ller, F. (1963) On the influence of changes in the CO2 concentration in air on the radiation balance of the earth's surface and on the climate. Journal of Geophysical Research, 68, 3877-3886.
[86] Lorenz, E.N. (1967) The Nature and theory of the general circulation of the atmosphere. World Meteorological Organization, Geneva, Switzerland.
[87] Bernhardt, K. and Lauter, E.A. (1977) Globale physikalische prozesse und umwelt. Zeitschrift f. Meteorologie, 27, 1-20.
[88] Holton, J.R. (1979) An Introduction to dynamic meteorology. Academic Press, New York/San Francisco/Lon- don.
[89] Kramm, G. and Meixner, F.X. (2000) On the dispersion of trace species in the atmospheric boundary layer: A re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus, 52A, 500-522.
[90] M?ller, F. (1973) Geschichte der meteorologischen Strahlungsforschung. Promet, 2, 1-23.
[91] Chandrasekhar, S. (1960) Radiative transfer. Dover Publications, New York.
[92] Lenoble, J. (1993) Atmospheric radiative transfer. A. Deepak Publishing, Hampton, VA.
[93] Arrhenius, S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine, 41, 237-275.
[94] Miskolczi, F.M. (2007) Greenhouse effect in semi- transparent planetary atmospheres. Id?járás, 111, 1-40.
[95] Kiehl, J.T. and Trenberth, K.E. (1997) Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78, 197-208. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
[96] United States Committee for the Global Atmospheric Research Program. (1975) Understanding climatic change: A program for action. National Academy of Sciences, Washington D.C.
[97] Budyko, M.I. (1982) The Earth’s climate, past and future. Academic Press, New York.
[98] Paltridge, G.W. and Platt, C.M.R. (1976) Radiative processes in meteorology and climatology. Elsevier Scientific Pub. Co., Amsterdam /New York.
[99] Ramanathan, V. (1987) The role of earth radiation budget studies in climate and general-circulation research. Journal of Geophysical Research-Atmospheres, 92, 4075-4095. doi:10.1029/JD092iD04p04075
[100] Schneider, S.H. (1987) Climate modeling. Scientific American, 256, 72-80. doi:10.1038/scientificamerican0587-72
[101] Maccracken, M.C. (1985) Carbon dioxide and climate change: Background and overview. In: Maccracken, M.C. and Luther, F.M., Eds., Projecting the climatic effects of increasing carbon dioxide. U.S. Department of Energy, pp. 1-23.
[102] Henderson-Sellers, A. and Robinson, P.J. (1986) Contemporary climatology. Longman Scientific & Technical, Wiley, London/New York.
[103] Rossow, W.B. and Zhang, Y.C. (1995) Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets 2. Validation and first results. Journal of Geophysical Research- Atmospheres, 100, 1167-1197.
[104] Fu, Q. (2003) Radiation (SOLAR). In: Holton, J.R., Ed., Encyclopedia of atmospheric sciences. Academic Press, Oxford, pp. 1859-1863.
[105] Berger, A. (1992) Orbital Variations and insolation database. In: IGBP PAGES/world data center for paleoclimatology data contribution series # 92-007. NOAA/ NGDC Paleoclimatology Program, Boulder, CO.
[106] Hasse, L. (1971) The sea surface temperature deviation and the heat flow at the sea-air interface. Boundary- Layer Meteorology, 1, 368-379. doi:10.1007/BF02186037
[107] Meehl, G.A., Karl, T., Easterling, D.R., Changnon, S., Pielke, R., Changnon, D., Evans, J., Groisman, P.Y., Knutson, T.R., Kunkel, K.E., Mearns, L.O., Parmesan, C., Pulwarty, R., Root, T., Sylves, R.T., Whetton, P. and Zwiers, F. (2000) An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts and model projections. Bulletin of the American Meteorological Society, 81, 413-416. doi:10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
[108] Forster, P., et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller. H.L., Eds., Climate change 2007: The physical science basis—Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp. 129-234.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.