Determination of Optimum Film Thickness and Composition of Cu(InAl)Se2 Thin Films as anAbsorber for Solar Cell Applications
Balakrishnan Kavitha, Muthusamy Dhanam
.
DOI: 10.4236/wjnse.2011.14017   PDF    HTML     4,530 Downloads   8,888 Views   Citations

Abstract

Cu(InAl)Se2 [CIAS] thin films have been prepared by chemical bath deposition [CBD] technique. X-ray diffraction [XRD] and Energy dispersive X-ray analysis [EDAX] spectra have been employed to confirm the structure and composition of the prepared films. The structural parameters have been estimated from XRD and EDAX spectra and their variation with film thickness and composition has been discussed in this paper in detail. From the discussion we enabled to find the optimum film thickness and composition of CIAS thin films for solar cell applications.

Share and Cite:

B. Kavitha and M. Dhanam, "Determination of Optimum Film Thickness and Composition of Cu(InAl)Se2 Thin Films as anAbsorber for Solar Cell Applications," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 108-118. doi: 10.4236/wjnse.2011.14017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egas and R. Noufi, “Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1–x Ga x )Se2 Solar Cells,” Progress Photovoltaics: Research and Applications, Vol. 13, No. 3, 2005, pp. 209-216. doi:10.1002/pip.626
[2] S. Marsillac, P. D. Paulson, M. W. Haimbodi and W. N. Shafarman, “High-Efficiency Solar Cells Based on Cu(InAl)Se2 Thin Films,” Applied Physics Letters, Vol. 81, No. 7, 2002, pp. 1350-1352.
[3] I. L. Repins, et al., “Comparison of Device Performance and Measured Transport Parameters in Widely-Varying Cu(In,Ga) (Se,S) Solar Cells,” Progress Photovoltaics: Research and Applications, Vol. 14, No. 1, 2006, pp. 25-30. doi:10.1002/pip.654
[4] K. Reddy, I. Forbes, R. Miles, M. Carter and P. Dutta, “Growth of High-Quality CuInSe2 Films by Selenising Sputtered Cu-In Bilayers Using a Closed Graphite Box,” Materials Letters, Vol. 37, No. 1-2, 1998, pp. 57-62. doi:10.1016/S0167-577X(98)00066-4
[5] R. Herberholz, V. Nadenau, U. Rühe, C. K?ble, H. W. Schock and B. Dimmler “Prospects of Wide-Gap Chalcopyrites for Thin Film Photovoltaic Modules,” Solar Energy Materials and Solar Cells, Vol. 49, No. 1-4, 1997, pp. 227-237. doi:10.1016/S0927-0248(97)00199-2
[6] B. Munir, R. A. Wibowo, E. S. Lee and K. H. Kim, “One Step Deposition of Cu(In1–x Alx)Se2 Thin Films by RF Magnetron Sputtering,” Journal of Ceramic Processing Research, Vol. 8, No. 4, 2007, pp. 252-255.
[7] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafarman, “CuIn1–x AlSe2 Thin Films and Solar Cells,” Journal of Applied Physics, Vol. 91, No. 12, 2002, pp. 10153-10156. doi:10.1063/1.1476966
[8] W. N. Shafarman, R. Klenk and B. E McCandless, “Device and Material Characterization of Cu(InGa)Se2 Solar Cells with Increasing Band Gap,” Journal of Applied Physics, Vol. 79, No. 9, 1996, pp. 7324-7328. doi:10.1063/1.361431
[9] Y. Bharath Kumar Reddy and V. Sundara Raja, “Optical and structural Properties of Co-Evaporated CuIn0.5Al0.5Se2 Thin Films,” Semiconductor Science and Technology, Vol. 19, No. 8, 2004, pp. 1015-1019. doi:10.1088/0268-1242/19/8/011
[10] Y. Bharath Kumar Reddy and V. Sundara Raja, “Preparation and Characterization of CuIn0.3Al0.7Se2Thin Films for Tandem Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 90, No. 11, 2006, pp. 1656-1665. doi:10.1016/j.solmat.2005.09.002
[11] Y. Bharath Kumar Reddy and V. Sundara Raja, “Preparation and Characterization of CuIn0.75Al0.25Se2 Thin Films by Co-Evaporation,” Physica B: Condensed Matter, Vol. 381, No. 1-2, 2006, pp. 76-81. doi:10.1016/j.physb.2005.12.256
[12] E. Itoch, O. Saitoh, M. Kita, H. Nagamori and H. Oike, “Growth and Characterization of Cu(InAl)Se2 by Vacuum Evaporation,“ Solar Energy Materials and Solar Cells, Vol. 50, No. 1-4, 1998, pp. 119-125. doi:10.1016/S0927-0248(97)00132-3
[13] Dhananjay, J. Nagaraju and S. B. Krupanidhi, “Structural and Optical Properties of CuIn1?x AlxSe2 Thin Films Prepared by Four-Source Elemental Evaporation,” Solid State Communications, Vol. 127, No. 3, 2003, pp. 243-246. doi:10.1016/S0038-1098(03)00389-2
[14] E. Halgand, J. C. Bernede, S. Marsillac and J. Kessler, “Physico-Chemical Characterization of Cu(InAl)Se2 Thin Film for Solar Cells Obtained by Selenization Process,” Thin Solids Films, Vol. 480-481, No. 1, 2005, pp. 443-446. doi:10.1016/j.tsf.2004.11.039
[15] M. Dhanam, P. K Manoj and R. R. Prabhu, “High Temperature Conductivity in Chemical Bath Deposited Copper Selenide Thin Films,” Journal of Crystal Growth, Vol. 280, No. 3-4, 2005, pp. 425-435. doi:10.1016/j.jcrysgro.2005.01.111
[16] B. Kavitha and M. Dhanam, “Study of Chemical Bath Deposited Cu(In,Al)Se2 Thin Films as an Alternate Candidate for Solar Cells,” Journal of Ceramic Processing Research, Vol. 10, No. 5, 2009, pp. 652-656.
[17] Y. Shi, Z. Jin, C. Li, H. An and J. Qiu, “Effect of [Cu]/[In] Ratio on Properties of CuInS2 Thin Films,” Applied Sur- face Science, Vol. 252, No. 10, 2006, pp. 3737-3743. doi:10.1016/j.apsusc.2005.05.055
[18] Y. Hamakawa, “Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications,” Springer Series in Photonics, Vol. 13, 2004, p. 244.
[19] M. Dhanam, R. Balasundarprabhu, S. Jayakumar, P. Gopalakrishnan and M. D. Kannan, “Preparation and Study of Structural and Optical Properties of Chemical Bath Deposited Copper Indium Diselenide Thin Film,” Physica Status Solidi (a), Vol. 191, No. 1, 2002, pp. 149-160.
[20] V. Bodnar, I. N. Tsyrelchuk and I. A. Victorov, “Preparation and Analysis of the CuAlxln1–x Se2 Solid Solutions,” Journal of Materials Science Letters, Vol. 13, No. 10, 1994, pp. 762-764. doi:10.1007/BF00461397
[21] J. López-García and C. Guillén, “CuIn1–xAlxSe2 Thin Films Obtained by Selenization of Evaporated Metallic Precursor Layers,” Thin Solid Films, Vol. 517, No. 7, 2009, pp. 2240-2243. doi:10.1016/j.tsf.2008.10.095
[22] Y. Bharath Kumar Reddy, V. Sundarara Raja and B. Sreedhar, “Growth and Characterization of CuIn1–xAlxSe2 Thin Films Deposited by Co-Evaporation,” Journal of Physics D: Applied Physics, Vol. 39, No. 24, 2006, pp. 5124- 5132. doi:10.1088/0022-3727/39/24/005
[23] W. Gebicki, M. Igason, W. Zajac and R. Trykozko, “Growth and Characterisation of CuIn1–xAlxSe2 Mixed Crystals,” Journal of Physics D: Applied Physics, Vol. 23, No. 7, 1990, pp. 964-966. doi:10.1088/0022-3727/23/7/034
[24] H. Miyake and K. Sugiyamma, “Photoluminescence Characteristics of CuIn1–xAlxSe2 Solid Solutions Grown by Iodine Transport Technique,” Journal of Applied Physics, Vol. 72, No. 8, 1992, pp. 3697-3702. doi:10.1063/1.352314
[25] M. Varela, E. Bertran, J. Esteve and J. L. Morenza, “Crystalline Properties of Co-Evaporated CuInSe2 Thin Films,” Thin Solid Films, Vol. 130, No. 1-2, 1985, pp. 155-164. doi:10.1016/0040-6090(85)90304-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.