Synthesis of Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application
Yousef M. Al-Yousef, Mohammad Ghouse
.
DOI: 10.4236/wjnse.2011.14016   PDF    HTML     6,316 Downloads   12,722 Views   Citations

Abstract

The nano ceramic Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) powders have been synthesized by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Glycine was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 850℃/3 hr in the air using Thermolyne 47,900 furnace. These powders were characterized by employing SEM/EDS, XRD and TGA/DTA techniques. The SEM images BSCF powder indicate the presence of highly porous spherical particles with nano sizes. The XRD results shows the formation of BSCF perovskite phase at the calcination temperature of 850℃. From XRD line broadening technique, the average crystllite size of the BSCF powders were found to be around 9.15 - 11.83 nm and 13.63 - 17.47 nm for as prepared and after calcination at 850℃ respectively. The TGA plot shows that there is no weight loss after the temperature around 450℃ indicating completion of combustion.

Share and Cite:

Y. Al-Yousef and M. Ghouse, "Synthesis of Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 99-107. doi: 10.4236/wjnse.2011.14016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. C. Singhal and K. Kendell, “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications,” Elsevier, Oxford, 2003.
[2] T. A. Damberger, “Fuel Cells for Hospitals,” Journal of Power Sources, Vol. 71, No. 1-2, 1998, pp. 45-50. doi:10.1016/S0378-7753(97)02786-9
[3] T.-L. Wen, D. Wang, M. Chen, H. Z. Zhang, H. Nie and W. Huang, “Materials Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, No. 3-4, 2002, pp. 513-519. doi:10.1016/S0167-2738(02)00098-X
[4] S. C. Singhal, “Advances in Solid Oxide Fuel Cell Technology,” Solid State Ionics, Vol. 135, No. 1-4, 2000, pp. 305-313. doi:10.1016/S0167-2738(00)00452-5
[5] N. Sakai, T. Kawada, H. Yokokawa, M. Dokia and T. Iwata, “Sinterability and Electrical Conductivity of Calcium-Doped Lanthanum Chromite,” Journal of Mater Science, Vol. 25, No. 10, 1990, pp. 305-313. doi:10.1007/BF00581119
[6] N. Sakai, T. Horita, H. Yokokawa, M. Dokia and T. Kawada, “Oxygen Permeation Measurement of La1–xCax CrO3–δ by Using an Electrochemical Method,” Solid State Ionics, Vol. 86-88, 1996, pp. 1273-1278.
[7] R. N. Basu, F. Tietz, O. Teller, E. Wessel, H. P. Buchkremer and D. Stover, “LaNi0.6Fe0.4O0.3 as Cathodecontact Material for Solid Oxide Fuel Cells,” Journal of Solid State Electrochemistry, Vol. 7, 2003, pp. 416-420.
[8] M. Koyama, C. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi and H. Takahashi, “The Mechanism of Porous Sm0.5Sr0.5CoO3 Cathodes Used in Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 148, No. 7, 2001, pp. A795-A801. doi:10.1149/1.1378290
[9] S. P. Simner, J. E. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle and J. W. Stevwenson, “Development of Lanthanum Ferrite SOFC Cathodes,” Journal of Power Sources, Vol. 113, No. 1, 2003, pp. 1-10. doi:10.1016/S0378-7753(02)00455-X
[10] “Solid Oxide Fuel Cell (SOFC)—Developments, Design, Materials and Current Status,” 14 August 2002. http://www.azom.com/article.aspx?ArticleID1571
[11] Y. M. Kim, P.-K. Lohsoontorn, S.-W. Baek, J. Bae, “Electrochemical Performance of Unsintered Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.8Fe0.2O3-δ (LBCF) and La0.8Sr0.2MnO3 Cathodes for Metal-Supported Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 3138-3146. doi:10.1016/j.ijhydene.2010.10.065
[12] J. Park, J. Zou, H. Yoon, G. Kim and J. S. Chung, “Electrochemical Behavior of Ba0.5Sr0.5Co0.2ZnxFe0.8O3-δ (x = 0 ~ 0.2) Perovskite Oxides for Cathodes of Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 6184-6193. doi:10.1016/j.ijhydene.2011.01.142
[13] D. Chen and Z. Shao, “Surface Exchange and Bulk Diffusion Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Mixed Conductors,” International Journal of Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 6948-6956.
[14] X. Sun, S. Li, J. Sun, X. Liu and B. Zhu, “Electrochemical Performance of BSCF Cathode Materials for Ceria-Composite Electrolyte Low Temperature Solid Oxide Fuel Cells,” International Journal of Electrochemical Science, Vol. 2, 2007, pp. 462-468.
[15] Z. Shao and S. M. Haile, “High Performance Cathode for the Next Generation Solid Oxide Fuel Cells,” Nature, Vol. 431, No. 9, 2004, pp. 170-173. doi:10.1038/nature02863
[16] L. Tan, X. Gu, L. Yang, W. Jin, L. K. Zhang and N. Xu, “Influence of Powder Synthesis Methods on Microstructure and Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite-Type Membranes,” Journal of Membrane Science, Vol. 212, No. 1-2, 2003, pp. 157-165. doi:10.1016/S0376-7388(02)00494-5
[17] S. Lee, Y. Lim, E. A. Lee, H. W. Hwang and J .W. Moon, “Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3-δ (LBCF) Cathodes Prepared By Combined Citrate- EDTA Method for IT-SOFCs,” Journal of Power Sources, Vol. 157, No. 2, 2006, pp. 848-854. doi:10.1016/j.jpowsour.2005.12.028
[18] H. Zhao, W. Shen, Z. Zjhu, X. Li and Z. Wang, “Preparation and Properties of BaxSr1-xCoyFe1-yO3-δ Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 182, No. 2, 2008, pp. 503-509. doi:10.1016/j.jpowsour.2008.04.046
[19] B. Wei, Z. Lu, S. Li, Y. Liu, K. Liu and W. Su, “Thermal and Electrical Properties of New Cathosde Material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for Solid Oxide Fuel Cells,” Electrochemical and Solid-State Letters, Vol. 8, No. 8, 2005, pp. A428-A431. doi:10.1149/1.1951232
[20] Y. Zhang, X. Huang, Z. Lu, Z. Liu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha and W. Su, “A Screen-Printed Ce0.8Sm0.2O1.9 Film Solid Oxide Fuel Cell with a Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode,” Journal of Power Sources, Vol. 160, No. 2, 2006, pp. 1217-1220. doi:10.1016/j.jpowsour.2006.02.048
[21] Y. Lin, R. Ran, Y. Zheng, Z. Shao,W. Jin, N. Xu and J. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Potential Cathode for an Anode-Supported Proton-Conducting Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 180, No. 1, 2008, pp. 15-22. doi:10.1016/j.jpowsour.2008.02.044
[22] K. Wincewicz, J. S. Cooper, “Taxonomies of SOFC Material and Manufacturing Alternatives,” Journal of Power Sources, Vol. 140, No. 2, 2004, pp. 170-173.
[23] M. Ghouse, A. Al-Musa, Y. Al-Yousef and M. F. Al-Otaibi, “Synthesis of Mg Doped LaCrO3 Nano Powder for Solid Oxide Fuel Cell (SOFC) Application,” Journal of New Materials for Electrochemical systems, Vol. 13, No. 2, 2010, pp. 99-106.
[24] Y. Al-Yousef and M. Ghouse, “Preparation of La0.6Ba0.4Co0.2Fe0.8O3 Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application,” Energy and Power Engineering, Vol. 3, No. 3, 2011, pp. 82-391. doi:10.4236/epe.2011.33049
[25] Y. H. Lim, J. Lee, J. S. Yoon, C. E. Kim and H. J. Hwang, “Electrochemical Performance of Ba0.5Sr0.5CoxFe1-xO3-δ (x = 0.2 ~ 0.8) Cathode on ScSz Electrolyte for Intermediate Temperature SOFCs,” Journal of Power Sources, Vol. 171, No. 1, 2007, pp. 79-85. doi:10.1016/j.jpowsour.2007.05.050
[26] M. Ghouse, Y. Al-Yousef, A. Al-Musa and M. F. Al-Otaibi, “Preparation of La0.6 Sr0.4 Co0.2 Fe0.8O3 Nanoceramic Powder by Sol-Gel Process for Solid Oxide Fuel Cell Application,” International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9411-9419. doi:10.1016/j.ijhydene.2010.04.144
[27] M. Ghouse, Y. Al-Yousef, A. Al-Musa and M. F. Al-Otaibi, “Preparation and Characterization of La0.7Ca0.3CrO3 Nano Ceramic Powder by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application,” World Journal of Engineering, Vol. 6, No. 1, 2009, pp. 149-155.
[28] B. D. Cullity, “Reading, Massachusetts,” 2nd Edition, Addison-Wesley Publications, Boston, 1978, p. 102.
[29] B. Liu and Y. Zhang, “Ba0.5Sr0.5Co0.8Fe0.2O3 Nano Powders Prepared by Glycine-Nitrate Process for Solid Oxide Fuel Cell Cathode,” Journal of Alloys and Compounds, Vol. 453, No. 1-2, 2008 pp. 418-422. doi:10.1016/j.jallcom.2006.11.142
[30] Subramania, T. Saradha and S. Muzhumathi, “Synthesis of Nano-Crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode Material by Novel Sol-Gel Thermolysis Process for IT-SOFCs,” Journal of Power Sources, Vol. 165, No. 2, 2007, pp. 728-732. doi:10.1016/j.jpowsour.2006.12.067

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.