Influence of agronomic variables on quality of tomato fruits

Abstract

In order to study interactions between agronomic variables and chemical composition that determine the quality of tomato fruits, a group of statistical techniques were applied: discriminant analysis (DA), cluster analysis (CA) and princepal component analysis (PCA) combined with ANOVA. The results of DA when characterizing the agronomic parameters were successful, especially when the collection date was used as a factor for classification. CA showed the importance of the chemical variables related to the metabolic relationships, while the principal component analysis and ANOVA provide information on the interaction between variables related to the production and chemical composition of tomatoes. The combined use of PCA and ANOVA is a suitable tool for studying the complex interactions between agronomy and chemical composition. Collection date was the main agronomic parameter effected the chemical composition, while variety and production system had a minor effect. The application of PCAANOVA showed that the taste of tomato depends on three factors: sugars (glucose and fructose), acidity (citric, malic and ascobirc acids), and minerals (Na and Mg). For the tomatoes with same maturity degree, the taste depends on interaction of date collection and system production.

Share and Cite:

Suárez, M. , Méndez, E. , Galdón, B. , Rodríguez, E. and Romero, C. (2011) Influence of agronomic variables on quality of tomato fruits. Agricultural Sciences, 2, 424-431. doi: 10.4236/as.2011.24054.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Giovanelli, G. and Paradiso, A. (2002) Stability of dried and intermediate moisture tomato pulp during storage. Journal of Agricultural and Food Chemistry, 50, 7277- 7281. doi:10.1021/jf025595r
[2] Madhavi, D.L. and Salunkhe, D.K. (1998) Production, composition, storage, and processing. New York.
[3] Lavelli, V., Peri, C. and Rizzolo, A. (2000) Antioxidant activity of tomato products as studied by model reactions using xanthine oxidase, myeloperoxidase, and copper- induced lipid peroxidation. Journal of Agricultural and Food Chemistry, 48, 14421448. doi:10.1021/jf990782j
[4] Leonardi, C., Ambrosino, P., Esposito, F. and Fogliano, V. (2000) Antioxidative activity and carotenoid and to- matine contents in different typologies of fresh con- sumption tomatoes. Journal of Agricultural and Food Chemistry, 48, 4723-4727. doi:10.1021/jf000225t
[5] Giovanelli, G., Lavelli, V., Peri, C. and Nobili, S. (1999) Variation in antioxidant components of tomato during vine and post-harvest ripening. Journal of the Science of Food and Agriculture, 79, 1583-1588. doi:10.1002/(SICI)1097-0010(199909)79:12<1583::AID-JSFA405>3.0.CO;2-J
[6] Van Boekl, M. and Jongen, W.M. (1997) Product quality and food processing: How to quantify the healthiness of a product. Cancer Letters, 114, 65-69. doi:10.1016/S0304-3835(97)04627-2
[7] Abushita, A.A, Daood, H.G. and Biacs, P.A. (2000) Change in carotenoids and antioxidants vitamins in to- mato as a functional of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48, 2075- 2081. doi:10.1021/jf990715p
[8] Thompson, K.A., Marshall, M.R., Sims, C.A., Wei, C.I., Sargent, S.A. and Scott, J.W. (2000) Cultivar, maturity and heat treatment on lycopene content in tomatoes. Journal of Food Science, 65, 791-795. doi:10.1111/j.1365-2621.2000.tb13588.x
[9] Grattan, S.R. and Grieve, C.M. (1999) Salinity—Min- eral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157. doi:10.1016/S0304-4238(98)00192-7
[10] Hernández, M., Rodríguez, E. and Díaz, C. (2007a) Free hydroxycinnamic acids, lycopene and color parameters in tomato cultivars. Journal of Agricultural and Food Che- mistry, 55, 8604-8615. doi:10.1021/jf071069u
[11] Hernández, M., Rodríguez, E.M. and Díaz, C. (2007b) Mineral and trace element concentrations in cultivars of tomatoes. Food Chemistry, 104, 489-499. doi:10.1016/j.foodchem.2006.11.072
[12] Hernández, M., Rodríguez, E.M. and Díaz, C. (2008b). Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chemistry, 106, 1046-1056. doi:10.1016/j.foodchem.2007.07.025
[13] Hernández, M., Rodríguez, E. and Díaz, C. (2008a) Analysis of organic acid content in cultivars of tomato harvested in Tenerife. European Food Research and Technology, 226, 423-435. doi:10.1007/s00217-006-0553-0
[14] AOAC (1999) Food composition; additives; natural contaminants. In AOAC: Official methods of analysis of AOAC vol. II. Arlington.
[15] Prosky, L., Asp, N., Furda, I., De Vries, J., Schweizer, T. and Harland, B. (1985) Determination of total dietary fiber in foods and food products: Collaborative study. Journal of Association of Official Analytical Chemists, 68, 677-679.
[16] Kujala, T.S., Loponen, J.M., Klika, K.D. and Pihlaja, K. (2000) Phenolic and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolic and three individual com- pounds. Journal of Agricultural and Food Chemistry, 48, 5338-5342. doi:10.1021/jf000523q
[17] Fish, W., Perkins-Veazie, P. and Collins, J. (2002) A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composi- tion and Analysis, 15, 309-317. doi:10.1006/jfca.2002.1069
[18] BOE (1995) Boletín Oficial del Estado. R.D. 2257/1994, de 25 de noviembre, por el que se aprueban los métodos oficiales de piensos o alimentos para animales y sus materias primas. No. 52 de 2 de marzo de 1995, 7161-7235.
[19] Li, B.W., Andrews, K.W. and Pehrsson, P.R. (2002) Indi- vidual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. Journal of Food Composition and Analysis, 15, 715-723. doi:10.1006/jfca.2002.1096
[20] Martínez-Valverde, I., Periago, M., Provan, G. and Chesson, A. (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). Journal of the Science of Food and Agriculture, 82, 323-330. doi:10.1002/jsfa.1035
[21] Díaz, V. (2002) Técnicas de análisis multivariante para investigación social y comercial. Ejemplos Prácticos Utilizando SPSS, Versión 11, Madrid.
[22] Nielsen, S. (2003) Food analysis. 3rd Edition, Kluwer Academic, New York.
[23] Giuntini, D., Graziani, G., Lercari, B., Fogliano, V., Soldatini, G.F. and Ranieri, A. (2005) Changes in carote- noid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. Journal of Agricultural and Food Chemistry, 53, 3174-3181. doi:10.1021/jf0401726
[24] Grierson, D. and Kader, A.A. (1986) The tomato crop, a scientific basis for improvement. Springer, London.
[25] Azcón-Bieto, J. and Talon, M. (2008) Fundamentos de fisiología y bioquímica vegetal. Interamericana McGraw- Hill, Madrid.
[26] Dumas, Y., Dadomo, M., Di Lucca, G. and Grolier, P. (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369-382. doi:10.1002/jsfa.1370
[27] Adams, S.R., Cockshull, K.E. and Cave, C.R.J. (2001) Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88, 869-877. doi:10.1006/anbo.2001.1524
[28] Rosales, M.A., Cervilla, L.M., Ríos, J.J., Blasco, B., Sánchez-Rodríguez, E., Romero, L. and Ruiz, J.M. (2009) Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediter- ranean greenhouses. Environmental and experimental botany, 67, 320-327. doi:10.1016/j.envexpbot.2009.07.011
[29] Cuartero, J. and Fernández-Mu?oz, R. (1999) Tomato and salinity. Scientia Horticulturae, 78, 83-125. doi:10.1016/S0304-4238(98)00191-5
[30] Bertin, N., Guichard, S., Leonardi, C., Longuenesse, J.J., Langlois, D. and Navez, B. (2000) Seasonal evolution of the quality of fresh glasshouse tomatoes under Mediter- ranean conditions, as affected by air vapour pressure deficit and plant fruit load. Annals of Botany, 85, 741-750. doi:10.1006/anbo.2000.1123
[31] Worthington, V. (2001) Nutritional quality of organic versus conventional fruits, vegetables, and grains. The Journal of Alternative and Complementary Medicine, 7, 61-173. doi:10.1089/107555301750164244
[32] Magkos, F., Arvaniti, F. and Zampelas, A. (2003) Or- ganic food or food for thought? A review of the evidence. International Journal of Food Sciences and Nutrition, 54, 357-371. doi:10.1080/09637480120092071
[33] Thybo, A.K., Edelenbos, M., Christensen, L.P., S?rensen, J.N. and Thorup-Kristensen, K. (2006) Effect of organic growing systems on sensory quality and chemical com- position of tomatoes. LWT—Food Science and Technology, 39, 835-843.
[34] Jin, S., Chen, C.C. and Plant, A.L. (2000) Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant, Cell and Environment, 23, 51-60. doi:10.1046/j.1365-3040.2000.00520.x
[35] Senaratna, T., Touchell, D., Bumm, E. and Sixon, K. (2000) Acetyl salicylic (Aspirin) and salicylic acid in- duce multiple stress tolerance in bean tomato plants. The Journal of Plant Growth Regulation, 30, 157-161. doi:10.1023/A:1006386800974
[36] Pastori, G.M. and Foyer, C.H. (2002) Common compo- nents, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-me- diated controls. Plant Physiology, 129, 7460-7468.
[37] Rossi, F., Godani, F., Bertuzzi, T., Trevisan, M., Ferrari, F. and Gatti, S. (2008). Health promoting substances and heavy metal content in tomatoes grown with different farming techniques. European Journal of Clinical Nutrition, 47, 266-272. doi:10.1007/s00394-008-0721-z
[38] Poovaiah, B.W., Glenn, G.M. and Reddy, A.S.N. (1988) Calcium and fruit softening: physiology and biochemistry. Horticultural Reviews, 10, 107-152.
[39] Lee, S.K. and Kader, A.A. (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20, 207-220. doi:10.1016/S0925-5214(00)00133-2
[40] Haila, K., Kumpulainen, J., Hakkinen, U. and Tahvonen, R. (1992) Sugar and organic acid contents of vegetables consumed in Finland during 1988-1989. Journal of Food Composition and Analysis, 5, 100-107. doi:10.1016/0889-1575(92)90024-E
[41] Young, T.E., Juvik, J.A. and Sullivan, J.G. (1993) Accu- mulation of the components of total solids in ripening fruits of tomato. Journal of the American Society for Horticultural Science, 118, 286-292.
[42] Chapagain, B.P. and Wiesman, Z. (2004) Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Scientia Horticulturae, 99, 279-288. doi:10.1016/S0304-4238(03)00109-2
[43] Zushi, K. and Matsuzoe, N. (1998) Effect of soil water deficit vitamin C, sugar, organic acid, amino acid and carotene contents of large-fruited tomatoes. Journal of the Japanese Society for Horticultural Science, 67, 927- 933. doi:10.2503/jjshs.67.927
[44] Macheix, J.J., Fleuriet, A. and Billot, J. (1990). Fruit phenolics. CRC Press, Boca Raton.
[45] Brandt, K., Giannini, A. and Lercari, B. (1995) Pho- tomorphogenic responses to UV radiation III: A comparative study of UVB effects on anthocyanin and flavonoid accumulation in wild type and aurea mutant of tomato (Lycopersicon esculentum Mill.). Photochemistry and Photobiology, 62, 1081-1087. doi:10.1111/j.1751-1097.1995.tb02412.x
[46] Wilkens, R.T., Spoerke, J.M. and Stamp, N.E. (1996) Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology, 77, 247- 258. doi:10.2307/2265674
[47] Raghothama, K.G. (1999) Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693. doi:10.1146/annurev.arplant.50.1.665
[48] Asami, D.K., Hong, Y.J., Barrett, D.M. and Mitchell, A.E. (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237-1241. doi:10.1021/jf020635c
[49] Ashraf, M. and Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16. doi:10.1016/j.plantsci.2003.10.024
[50] Matilla, P. and Kumpulainen, J. (2002). Determination of free and total phenolic acid in plant-derived foods by HPLC with diode-array detection. Journal of Agricul- tural and Food Chemistry, 50, 3660-3667. doi:10.1021/jf020028p
[51] Dixon, R.A. and Paiva, N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085-1097.
[52] Trudel, M.J. and Ozbun, J.L. (1971). Influence of potassium on carotenoid content of tomato fruit. Journal of the American Society for Horticultural Science, 96, 763-765.
[53] Fiehn, O. (2001). Combining genomics, metabolome analy- sis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155-168. doi:10.1002/cfg.82

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.