Integrated Movable System of Fuel Cell with Replaceable Fiber Bipolar Plate
Chang Shiuh Ming, Kuo Jenn Kun
.
DOI: 10.4236/sgre.2011.24046   PDF    HTML     6,523 Downloads   10,709 Views  

Abstract

It is important for the fuel cell integrated movable system to operate voltage and current using safety control technology. In order to work at the convenient condition of the fuel cell system, high performance fuel cell stack with replaceable fiber bipolar plate should be arranged with the integrated subsystem and appropriate working process. The parameters which affect the performance of PEMFC consisting of relative humidity, reaction temperature, gas inlet temperature, gas inlet pressure, and hydrogen and air flow rate. This study is to develop the integrated movable system on distributed power generation and backup power application, such as oxidant supply system, fuel supply system, heat management system, water management system, and power conditioning system. It comprises a novel PLC (Programmable Logic Control) system and human-machine interface. The controller is developed to control fuel cell system and record the operation data by using data acquisition system. The controller can be applied to high performance stack and system to obtain the best performance. The easy-taken high capacity hydrogen barrel embedded into steel plate of this movable system and more convenient than other fuel cell system.

Share and Cite:

C. Ming and K. Kun, "Integrated Movable System of Fuel Cell with Replaceable Fiber Bipolar Plate," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 399-409. doi: 10.4236/sgre.2011.24046.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. O. Schumacher, P. Gemmar, M. Denne, M. Zedda and M. Stueber, “Control of Miniature Proton Exchange Membrane Fuel Cells Based on Fuzzy Logic,” Journal of Power Sources, Vol. 129, No. 2, 2004, pp. 143-151. doi:10.1016/j.jpowsour.2003.10.010
[2] J. M. Correa, F. A. Ferret, L. N. Canha and M. G. Simoes, “An Electrochemical Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Trans Industrial Electron, Vol. 51, No. 5, 2004, pp. 1103-1112. doi:10.1109/TIE.2004.834972
[3] S. Pasricha, M. Keppler, S. R. Shaw and N. M. Hashem, “Comparison and Identification of Static Electrical Terminal Fuel Cell Models,” IEEE Trans Energy Conversion, Vol. 22, No. 3, 2007, pp. 746-54. doi:10.1109/TEC.2007.895465
[4] A. J. del Real, A. Arce and C. Bordons, “Development and Experimental Validation of a PEM Fuel Cell Dynamic Model,” Journal of Power Sources, Vol. 173, No. 1, 2007, pp. 310-324. doi:10.1016/j.jpowsour.2007.04.066
[5] A. Kirubakaran, S. Jain and R. K. Nema, “A Review on Fuel Cell Technologies and Power Electronic Interface,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 9, 2009, pp. 2430-2440. doi:10.1016/j.rser.2009.04.004
[6] R. Tirnovan, A. Miraoui, R. Munteanu, I. Vadan and H. Balan, “Polymer Electrolyte Fuel Cell System (PEFC) Performance Analysis,” IEEE International Conference Automation, Quality and Testing Robotics, Cluj-Napoca, 25-28 May 2006, pp. 457-462. doi:10.1109/AQTR.2006.254580
[7] D. K. Choi, B. K. Lee, S. W. Choi, C. Y. Won and D. W. Yoo, “A Novel Power Conversion Circuit for Cost-Effective Battery-Fuel Cell Hybrid Systems,” Journal of Power Sources, Vol. 152, No. 1, 2007, pp. 245-255. doi:10.1016/j.jpowsour.2005.01.050
[8] J. K. Kuo and C. K. Chen, “The Effects of Buoyancy on the Performance of a PEM Fuel Cell with a Wave-Like Gas Flow Channel Design by Numerical Investigation,” International Journal of Heat and Mass Transfer, Vol. 50, No. 21-22, 2007, pp. 4166-4179. doi:10.1016/j.ijheatmasstransfer.2007.02.039
[9] J. K. Kuo and C. K. Chen, “Improvement of the Performance of the Gas Flow Channel in the PEM Fuel Cells,” Energy Conversion and Management, Vol. 49, No. 10, 2008, pp. 2776-2787. doi:10.1016/j.enconman.2008.03.024
[10] S. Y. Choe, J. G. Lee, J. W. Ahn and S. H. Baek, “Integrated Modeling and Control of PEM Fuel Cell Power System with a PWM DC/DC Converter,” Journal of Power Sources, Vol. 164, No. 2, 2007, pp. 614-623. doi:10.1016/j.jpowsour.2006.10.082
[11] J. J. Hwang, D. Y. Wang and N. C. Shin, “Development of a Lightweight Fuel Cell Vehicle,” Journal of Power Sources, Vol. 141, No. 1, 2005, pp. 108-115. doi:10.1016/j.jpowsour.2004.08.056
[12] A. Sakhare, A. Davari and A. Feliachi, “Fuzzy Logic Control of Fuel Cell for Stand-Alone and Grid Connection,” Journal of Power Sources, Vol. 135, No. 1-2, 2004, pp. 165-176. doi:10.1016/j.jpowsour.2004.04.013
[13] C. L. Chang, C. Y. Chen, C. C. Sung and D. H. Liou, “Fuel Sensor-Less Control of a Liquid Feed Fuel Cell under Dynamic Loading Conditions for Portable Power Sources (I),” Journal of Power Sources, Vol. 182, No. 1, 2008, pp. 133-140. doi:10.1016/j.jpowsour.2008.04.026

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.