Share This Article:

Trichome-Specific Expression of Amorpha-4,11-Diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L., as Reported by a Promoter-GUS Fusion

Full-Text HTML Download Download as PDF (Size:570KB) PP. 619-628
DOI: 10.4236/ajps.2011.24073    4,370 Downloads   10,258 Views   Citations


Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.

Cite this paper

H. Wang, L. Olofsson, A. Lundgren and P. Brodelius, "Trichome-Specific Expression of Amorpha-4,11-Diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L., as Reported by a Promoter-GUS Fusion," American Journal of Plant Sciences, Vol. 2 No. 4, 2011, pp. 619-628. doi: 10.4236/ajps.2011.24073.


[1] D. Rathore, T. F. McCutchan, M. Sullivan and S. Kumar, “Antimalarial Drugs: Current Status and New Developments,” Expert Opinion on Investigational Drugs, Vol. 14, No. 7, 2005, pp. 871-883. doi:10.1517/13543784.14.7.871
[2] T. E. Wallart, N. Pras and W. J. Ouax, “Seasonal Variations of Artemisinin and Its Biosynthetic Precursors in Tetraploid Artemisia annua Plants Compared with the Diploid Wild-Type,” Planta Medica, Vol. 65, No. 8, 1999, pp. 723-728. doi:10.1055/s-1999-14094
[3] N. Delabays, X. Simonnet and M. Gaudin, “The Genetics of Artemisinin Content in Artemisia annua L. and the Breeding of High Yielding Cultivars,” Current Medicinal Chemistry, Vol. 8, No. 15, 2001, pp. 795-1801.
[4] M. Hommel, “The Future of Artemisinins: Natural, Syn- thetic or Recombinant?” Journal of Biology, Vol. 7, No. 10, 2008, p. 38. doi:10.1186/jbiol101
[5] F. Jing, L. Zhang, M. Li, Y. Tang, Y. Wang, Y. Wang, Q. Wang, Q. Pan, G. Wang and K. Tang, “Abscisic Acid (ABA) Treatment Increases Artemisinin Content in Artemisia annua by Enhancing the Expression of Genes in Artemisinin Biosynthetic Pathway,” Biologia, Vol. 64, No. 2, 2009, pp. 319-323. doi:10.2478/s11756-009-0040-8
[6] T. C. Smith, P. J. Weathers and R. D. Cheetham, “Effects of Gibberellic Acid on Hairy Root Cultures of Artemisia annua: Growth and Artemisinin Production,” In Vitro Cellular & Developmental Biology-Plant, Vol. 33, No. 1, 1997, pp. 75-79. doi:10.1007/s11627-997-0044-4
[7] P. J. Weathers, G. Bunk and M. C. McCoy, “The Effect of Phytohormones on Growth and Artemisinin Production in Artemisia annua Hairy Root,” In Vitro Cellular & Developmental Biology-Plant, Vol. 41, No. 1, 2005, pp. 47-53. doi:10.1079/IVP2004604
[8] Y. S. Zhang, H. C. Ye, B. Y. Liu, H. Wang and G. F. Li, “Exogenous GA3 and Flowering Induce the Conversion of Artemisinic Acid to Artemisinin in Artemisia annua Plants,” Russian Journal of Plant Physiology, Vol. 52, No. 1, 2005, pp. 58-62. doi:10.1007/s11183-005-0009-6
[9] W. Putalun, W. Luealon, W. De-Eknamkul, H. Tanaka and Y. Shoyama, “Improvement of Artemisinin Production by Chitosan in Hairy Root Cultures of Artemisia annua L.,” Biotechnology Letters, Vol. 29. No. 7, 2007, pp. 1143-1146. doi:10.1007/s10529-007-9368-8
[10] A. Baldi and V. K. Dixit, “Yield Enhancement Strategies for Artemisinin Production by Suspension Cultures of Ar- temisia annua,” Bioresource Technology, Vol. 99, No. 11, 2008, pp. 4609-4614. doi:10.1016/j.biortech.2007.06.061
[11] C. Lei , D. Ma, G. Pu, X. Qiu, Z. Du, H. Wang, G. Li, H. Ye and B. Liu, “Foliar Application of Chitosan Activates Artemisinin Biosynthesis in Artemisia annua L.,” Industrial Crops and Products, Vol. 33, No. 1, 2011, pp. 176-182. doi:10.1016/j.indcrop.2010.10.001
[12] L. Zhang, F. Jing, F. Li, M. Li, Y. Wang, G. Wang, X. Sun and K. Tang, “Development of Transgenic Artemisia annua (Chinese Wormwood) Plants with an Enhanced Content of Artemisinin, an Effective Anti-Malarial Drug, by Hairpin-RNA-Mediated Gene Silencing,” Biote- chnology and Applied Biochemistry, Vol. 52, No. 3, 2009, pp. 199-207. doi:10.1042/BA20080068
[13] L. -L. Feng, R. -Y. Yang, X. -Q. Yang, X. -M. Zeng. W. -J. Lu and Q. -P. Zeng, “Synergistic Re-Channeling of Mevalonate Pathway for Enhanced Artemisinin Production in Transgenic Artemisia annua,” Plant Science, Vol. 177, No. 1, 2009, pp. 57-67. doi:10.1016/j.plantsci.2009.03.014
[14] J. -L. Han, B. -Y. Liu, H. -C. Ye, H. Wang, Z. -Q. Li and G. -F. Li, “Effects of Overexpression of the Endogenouse Farnesyl Diphosphate Synthase on the Artemisinin Content in Artemisia annua L.,” Journal of Integrative Plant Biology, Vol. 48, No. 4, 2006, pp. 482-487. doi:10.1111/j.1744-7909.2006.00208.x
[15] P. Mercke, M. Bengtsson, H. J. Bouwmeester, M. A. Posthumus and P. E. Brodelius, “Molecular Cloning, Expression, and Characterization of Amorpha-4,11-Diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L.,” Archives of Biochemistry and Biophysics, Vol. 381, No. 2, 2000, pp. 173-180. doi:10.1006/abbi.2000.1962
[16] H. J. Bouwmeester, T. E. Wallaart, M. H. Janssen, B. van Loo, B. J. Jansen, M. A. Posthumus, C. O. Schmidt, J. W. de Kraker, W. A. Konig and M. C. Franssen, “Amorpha-4,11-Diene Synthase Catalyses the First Probable Step in Artemisinin Biosynthesis,” Phytochemistry, Vol. 52, No. 5, 1999, pp. 843-854. doi:10.1016/S0031-9422(99)00206-X
[17] S. H. Kim, Y. J. Chang and S. U. Kim, “Tissue Specificity and Developmental Pattern of Amorpha-4,11-Diene Synthase (ADS) Proved by ADS Promoter-Driven GUS Expression in the Heterologous Plant, Arabidopsis thaliana,” Planta Medica, Vol. 74, No. 2, 2008, pp. 188-193. doi:10.1055/s-2008-1034276
[18] K. H. Teoh, D. R. Polichuk, D. W. Reed, G. Nowak and P. S. Covello, “Artemisia annua L. (Asteraceae) Trichome-Specific cDNAs Reveal CYP71AV1, a Cytochrome P450 with a Key Role in the Biosynthesis of the Antimalarial Sesquiterpene Lactone Artemisinin,” FEBS Letters, Vol. 580, No. 5, 2006, pp. 1411-1416. doi:10.1016/j.febslet.2006.01.065
[19] D. -K. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong and J. D. Keasling, “Production of the Antimalarial Drug Precursor Artemisinic Acid in Engineered Yeast,” Nature, Vol. 440, No. 7, 2006, pp. 940-943. doi:10.1038/nature04640
[20] G. D. Brown and L. K. Sy, “In Vivo Transformations of Dihydroartemisinic Acid in Artemisia annua Plants,” Tetrahedron, Vol. 60, No. 5, 2004, pp. 1139-1159. doi:10.1016/j.tet.2003.11.070
[21] Y. Zhang, K. H. Teoh, D. W. Reed, L. Maes, A. Goossens, D. J. Olson, A. R. Ross and P. S. Covello, “The Molecular Cloning of Artemisinic Aldehyde ?11(13) Reductase and Its Role in Glandular Trichome-Dependent Biosynthesis of Artemisinin in Artemisia annua,” The Journal of Biological Chemistry, Vol. 283, No. 31, 2008, pp. 21501-21508. doi:10.1074/jbc.M803090200
[22] K. H. Teoh, D. R. Polichuk, D. W. Reed and P. S. Covello, “Molecular Cloning of an Aldehyde Dehydrogenase Implicated in Artemisinin Biosynthesis in Artemisia annua,” Botany, Vol. 87, No. 6, 2009, pp. 635-642. doi:10.1139/B09-032
[23] M. V. Duke, R. N. Paul, H. N. Elsohly, G. Sturtz and S. O. Duke, “Localization of Artemisinin and Artemisitene in Foliar Tissues of Glanded and Glandless Biotypes of Artemisia annua L.,” International Journal of Plant Sciences, Vol. 155, No. 3, 1994, pp. 365-372. doi:10.1086/297173
[24] P. S. Covello, K. H. Teoh, R. Devin, D. R. Polichuk, “Function Genomic and Biosynthesis of Artemisinin,” Phytochemistry, Vol. 68, No. 14, 2007, pp. 1864-1871. doi:10.1016/j.phytochem.2007.02.016
[25] L. Olofsson, A. Engstr?m, A. Lundgren and P. E. Brodelius, “Relative Expression of Genes of Terpene Metabolism in Different Tissues of Artemisia annua L.,” BMC Plant Biology, Vol. 11, No. 45, 2011, pp. 1-12.
[26] J. Fütterer, A. Gisel, V. Iglesias, A. Kl?ti, B. Kost, O. Mittelsten Scheid, G. Neuhaus, G. Neuhaus-Url, M. Schrott, R. Shillito, G. Spangenberg and Z. Y. Wang, “Standard Molecular Techniques for the Analysis of Transgenic Plants,” In: I. Potrykus and G. Spangenberg, Eds., Gene Transfer to Plants, Springer Verlag, Berlin, 1995, pp. 215-263.
[27] R. A. Jefferson, T. A. Kavanagh and M. W. Bevan, “GUS Fusions: Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants,” The EMBO Journal, Vol. 6, No. 13, 1987, pp. 3901-3907.
[28] S. Yin, L. Mei, J. Newman, K. Back and J. Chappell, “Regulation of Sesquiterpene Cyclase Gene Expression; Characterization of an Elicitor- and Pathogen-Inducible Promoter,” Plant Physiology, Vol. 115, No. 2, 1997, pp. 437-451. doi:10.1104/pp.115.2.437
[29] T. Yang and B. W. Poovaiah, “An Early Ethylene up-Regulated Gene Encoding a Calmodulin-Binding Protein Involved in Plant Senescence and Death,” The Journal of Biological Chemistry, Vol. 275, No. 49, 2000, pp. 38467-38473. doi:10.1074/jbc.M003566200
[30] T. Yang and B. W. Poovaiah, “A Calmodulin-Binding/ CGCG-Box DNA-Binding Protein Family Involved in Multiple Signaling Pathways in Plants,” The Journal of Biological Chemistry, Vol. 277, No. 47, 2002, pp. 45049-45058. doi:10.1074/jbc.M207941200
[31] L. D. Zhang, K. J. Zuo, F. Zhang, Y. F. Cao, J. Wang, Y. D. Zhang, X. F. Sun and K. X. Tang, “Conservation of Non-Coding Microsatellites in Plants: Implication for Gene Regulation,” BMC Genomics, Vol. 7, No. 323, 2006, pp. 1-14.
[32] G. -B. Pu, D. -M. Ma, J. -L. Chen, L. -Q. Ma, H. Wang, G. -F. Li, H. -C. Ye and B. -Y. Liu, “Salicylic Acid Activates Artemisinin Biosynthesis in Artemisia annua L.,” Plant Cell Reports, Vol. 28, No. 7, 2009, pp. 1127-1135. doi:10.1007/s00299-009-0713-3
[33] D. Ma, G. Pu, C. Lei, L. Ma, H. Wang, Y. Guo, J. Chen, Z. Du, H. Wang, G. Li, H. Ye and B. Liu; “Isolation and Characterization of AaWRKY1, an Artemisia annua Transcription Factor that Regulates the Amorpha-4,11- Diene Synthase Gene, a Key Gene of Artemisinin Bio- synthesis,” Plant and Cell Physiology, Vol. 50, No. 12, 2009, pp. 2146-2161. doi:10.1093/pcp/pcp149
[34] Y. -H. Xu, J. -W. Wang, S. Wang, J. -Y. Wang and X. -Y. Chen, “Characterization of GaWRKY1, a Cotton Transcription Factor that Regulates the Sesquiterpene Synthase Gene (+)-δ-Cadinene Synthase-A,” Plant Physiology, Vol. 135, No. 1, 2004, pp. 507-515. doi:10.1104/pp.104.038612
[35] J. C. Reyes, M. I. Muro-Pastor and F. J. Florencio, “The GATA Family of Transcription Factors in Arabidopsis and Rice,” Plant Physiology, Vol. 134, No. 4, 2004, pp. 1718-1732. doi:10.1104/pp.103.037788
[36] T. Urao, K. Yamaguchi-Shinozaki, S. Urao and K. Shinozaki, “An Arabidopsis myb Homolog Is Induced by Dehydration Stress and Its Gene Product Binds to the Conserved MYB Recognition Sequence,” Plant Cell, Vol. 5, No. 11, 1993, pp. 1529-1539.
[37] R. Solano, C. Nieto, J. Avila, L. Ca?as, I. Diaz and J. Paz-Ares, “Dual DNA Binding Specificity of a Petal Epidermis-Specific MYB Transcription Factor (MYB. Ph3) from Petunia hybrida,” The EMBO Journal, Vol. 14, No. 8, 1995, pp. 1773-1784.
[38] G. D. Brown, G. -Y. Liang and L. -K. Sy, “Terpenoids from the Seeds of Artemisia annua,” Phytochemistry, Vol. 64, No. 1, 2003, pp. 303-323. doi:10.1016/S0031-9422(03)00294-2
[39] J. F. S. Ferreira, J. E. Simon and J. Janick, “Developmental Studies of Artemisia annua: Flowering and Artemisinin Production under Greenhouse and Field Conditions,” Planta Medica, Vol. 61, No. 2, 1995, pp. 167-170. doi:10.1055/s-2006-958040
[40] M. E. Olsson, L. M. Olofsson, A. L. Lindahl, A. Lundgren, M. Brodelius and P. E. Brodelius, “Localization of Enzymes of Artemisinin Biosynthesis to the Apical Cells of Glandular Secretory Trichomes of Artemisia annua L.,” Phytochemistry, Vol. 70, No. 9, 2009, pp. 1123-1128. doi:10.1016/j.phytochem.2009.07.009
[41] K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR and the 2–??CT Method,” Methods, Vol. 25, No. 4, 2001, pp. 402-408. doi:10.1006/meth.2001.1262
[42] D. Mascarenhas, I. J. Mettler, D. A. Pierce and H. W. Lowe, “Intron-Mediated Enhancement of Heterologous Gene Expression in Maize,” Plant Molecular Biology, Vol. 15, No. 6, 1990, pp. 913-920. doi:10.1007/BF00039430
[43] M. K. Deyholos and L. E. Sieburth, “Separable WhorlSpecific Expression and Negative Regulation by Enhancer Elements within the AGAMOUS Second Intron,” Plant Cell, Vol. 12, No. 10, 2000, pp. 1799-1810.
[44] S. O. Duke and R. N. Paul, “Development an Fine Structure of the Glandular Trichomes of Artemisia annua L.,” International Journal of Plant Sciences, Vol. 154, No. 1, 1993, pp. 107-118. doi:10.1086/297096

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.