Share This Article:

Analytical Solution for Acoustic Waves Propagation in Fluids

Abstract Full-Text HTML XML Download Download as PDF (Size:338KB) PP. 243-246
DOI: 10.4236/wjm.2011.15030    6,681 Downloads   12,190 Views   Citations

ABSTRACT

This paper presents a mathematical model of linear acoustic wave propagation in fluids. The benefits of a mathematical model over a normal mode analysis are first discussed, then the mathematical model for acoustic propagation in the test medium is developed using computer simulations. The approach is based on a analytical solution to the homogeneous wave equation for fluid medium. A good agreement between the computational presented results with published data.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Othman, M. Ali and R. Farouk, "Analytical Solution for Acoustic Waves Propagation in Fluids," World Journal of Mechanics, Vol. 1 No. 5, 2011, pp. 243-246. doi: 10.4236/wjm.2011.15030.

References

[1] L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, “Fundamentals of Acoustics,” 4th Edition, Wiley, New York, 2000.
[2] S. W. Rienstra and A. Hirschberg, “An Introduction to Acoustics,” Eindhoven University of Technology, Eindhoven, 2009.
[3] S. W. Rienstra, “Sound Propagation in Slowly Varying Lined Flow Ducts of Arbitrary Cross Section,” Journal of Fluid Mechanics, Vol. 495, 2003, pp. 157-173. doi:10.1017/S0022112003006050
[4] D. Daniel and Joseph, “Review Potential Flow of Viscous Fluids: Historical Notes,” International Journal of Multiphase Flow, Vol. 32, No. 3, 2006, pp. 285-310. doi:10.1016/j.ijmultiphaseflow.2005.09.004
[5] J. G. Maloney and K. E. Cummings, “Adaptation of FDTD Techniques to Acoustic Modeling,” 11th Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 1995, pp. 724-731, CA.
[6] M. I. A. Othman, “Effect of Rotation in Case of 2-D Problems of Generalized Thermoelasticity with Thermal Relaxation,” Mechanics & Mechanical Engineering, Vol. 8, 2005, pp. 111-126.
[7] M. I. A. Othman, “Effect of Rotation on Plane Waves in Generalized Thermo-Elasticity with Two Relaxation Times,” International Journal of Solids and Structures, Vol. 41, No. 11-12, 2004, pp. 2939-2956. doi:10.1016/j.ijsolstr.2004.01.009
[8] M. I. A. Othman, “Lord-Shulman Theory under the Dependence of the Modulus of Elasticity on the Reference Temperature in Two-Dimensional Generalized Thermo- elasticity,” Journal of Thermal Stresses, Vol. 25, No. 11, 2002, pp. 1027-1045. doi:10.1080/01495730290074621
[9] J. N. Sharma, R. Chand and M. I. A. Othman, “On the Propagation of Lamb Waves in Visco-Thermoelastic Plates under Fluid Loadings,” International Journal of Engineering Science, Vol. 47, No. 3, 2009, pp. 391-404. doi:10.1016/j.ijengsci.2008.10.008
[10] M. I. A. Othman and R. Kumar, “Reflection of Magneto-Thermoelastic Waves under the Effect of Temperature Dependent Properties in Generalized Thermo-Elas- ticity with Four Theories,” International Communications in Heat and Mass Transfer, Vol. 36, No. 5, 2009, pp. 513-520. doi:10.1016/j.icheatmasstransfer.2009.02.002
[11] M. I. A. Othman and B. Singh, “The Effect of Rotation on Generalized Micropolar Thermoelasticity for a Half- space under Five Theories,” International Journal of Solids and Structures, Vol. 44, No. 9, 2007, pp. 2748- 2762. doi:10.1016/j.ijsolstr.2006.08.016
[12] M. I. A. Othman, Kh. Lotfy and R. M. Farouk, “Generalized Thermo-Micro-Stretch Elastic Medium with Temperature Dependent Properties for Different Theories,” Engineering Analysis of Boundary Element, Vol. 34, No. 3, 2010, pp. 229-237. doi:10.1016/j.enganabound.2009.10.003
[13] M. I. A. Othman, “Electrohydrodynamic Stability in a Horizontal Viscoelastic Fluid Layer in the Presence of a Vertical Temperature Gradient,” International Journal of Engineering Science, Vol. 39, No. 11, 2001, pp. 1217- 1232. doi:10.1016/S0020-7225(00)00092-6
[14] S. Wang, “Finite-Difference Time-Domain Approach to Underwater Acoustic Scattering problems,” Journal of the Acoustical Society of America, Vol. 99, No. 4, 1996, pp. 1924-1931. doi:10.1121/1.415375

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.