Overexpression of OGFr Downregulates Ovarian Cancer Cell Proliferation In Vitro and Inhibits Tumorigenesis
Renee N. Donahue, Patricia J. McLaughlin, Ian S. Zagon
.
DOI: 10.4236/jct.2011.24078   PDF    HTML   XML   4,933 Downloads   8,639 Views   Citations

Abstract

The opioid growth factor (OGF) and its receptor (OGFr) regulate human ovarian cancer cell proliferation through a tonically active inhibitory axis. We investigated the effect of OGFr overexpression on ovarian tumorigenesis. Clonal cell lines of SKOV-3 human ovarian cancer were established to stably overexpress OGFr. shRNA constructs were evaluated for antitumor activity in vitro, as well as in vivo using mouse models of s.c. and i.p. tumor transplantation. The 5 clonal cell lines were characterized by increases in OGFr protein (62% to 245%) and binding capacity (51% - 154%), and decreases (36% - 185%) in cell number, relative to untransfected wild-type (WT) cells and empty vector (EV) transfected clones. Nude mice receiving s.c. injection of 2 overexpressing OGFr cell lines (OGFr-3 and OGFr-22) had reduced tumor incidence, delayed tumor appearance (up to 12 days), and decreased tumor volume (up to 87%) relative to WT and EV controls. Mice injected i.p. with these clonal lines displayed reduced formation of tumor nodules (up to 95%), and depressed tumor weights (up to 99%) compared to WT and EV groups. DNA synthesis, but not cell survival, was depressed in cells and s.c. tumors overexpressing OGFr in comparison to the WT and EV groups. Angiogenesis was reduced up to 86% in clonal tumors compared to WT and EV groups. This preclinical evidence demonstrates that OGFr expression is a molecular determinant of ovarian cancer progression, and has important relevance to understanding the pathogenesis and treatment of this deadly disease.

Share and Cite:

R. Donahue, P. McLaughlin and I. Zagon, "Overexpression of OGFr Downregulates Ovarian Cancer Cell Proliferation In Vitro and Inhibits Tumorigenesis," Journal of Cancer Therapy, Vol. 2 No. 4, 2011, pp. 579-594. doi: 10.4236/jct.2011.24078.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu and M. J. Thun, “Cancer Statistics, 2010,” CA: A Cancer Journal for Clinicians, Vol. 60, No. 5, 2010, pp. 277-300.
[2] I. Boger-Megiddo and N. S. Weiss, “Histologic Subtypes and Laterality of Primary Ovarian Tumors,” Gynecologic Oncology, Vol. 97, No. 1, 2005, pp. 80-83. doi:10.1016%2Fj.ygyno.2004.11.054
[3] N. Chobanian and C. S. Dietrick, “Ovarian Cancer,” Surgical Clinics of North America, Vol. 88, No. 2, 2008, pp. 285-299.
[4] P. Dinh, P. Harnett, M. J. Piccart-Gebhart and A. Awada, “New Therapies for Ovarian Cancer: Cytotoxics and Molecularly Targeted Agents,” Critical Reviews in Oncology/Hematology, Vol. 67, No. 2, 2008, pp. 103-112.
[5] E. J. Nam and Y. T. Kim, “Alteration of Cell-Cycle Regulation in Epithelial Ovarian Cancer,” International Journal of Gynecological Cancer, Vol. 18, No. 6, 2008, pp. 1169-1182. doi:10.1111% 2Fj.1525-1438.2008.01191.x
[6] I. S. Zagon, M. F. Verderame and P. J. McLaughlin, “The Biology of the Opioid Growth Factor Receptor (OGFr),” Brain Research Reviews, Vol. 38, No. 3, 2002, pp. 351-376.
[7] P. J. McLaughlin, R. J. Levin and I. S. Zagon, “Regulation of Human Head and Neck Squamous Cell Carcinoma Growth in Tissue Culture by Opioid Growth Factor,” International Journal of Oncology, Vol. 14, No. 5, 1999, pp. 991-998.
[8] I. S. Zagon, J. P. Smith and P. J. McLaughlin, “Human Pancreatic Cancer Cell Proliferation in Tissue Culture Is Tonically Inhibited by Opioid Growth Factor,” International Journal of Oncology, Vol. 14, No. 3, 1999, pp. 577-584.
[9] I. S. Zagon, S. D. Hytrek and P. J. McLaughlin, “Opioid Growth Factor Tonically Inhibits Human Colon Cancer Cell Proliferation in Tissue Culture,” American Journal of Physiology, Vol. 271, No. 3, Part 2, 1996, pp. R511-R518.
[10] G. J. Bisignani, P. J. McLaughlin, S. D. Ordille, M. J. Jarowenko and I. S. Zagon, “Human Renal Cell Proliferation in Tissue Culture Is Tonically Inhibited by Opioid Growth Factor,” Journal of Urology, Vol. 162, No. 6, 1999, pp. 2186-2191.
[11] R. N. Donahue, P. J. McLaughlin and I. S. Zagon, “Cell Proliferation of Human Ovarian Cancer Is Regulated by the Opioid Growth Factor—Opioid Growth Factor Receptor Axis,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, Vol. 296, No. 6, 2009, pp. R1716-R1725.
[12] F. Cheng, I. S. Zagon, M. F. Verderame and P. J. Mc- Laughlin, “The OGF-OGFr Axis Utilizes the p16 Pathway to Inhibit Progression of Human Squamous Cell Carcinoma of the Head and Neck,” Cancer Research, Vol. 67, No. 21, 2007, pp. 10511-10518. doi:10.1158%2F0008-5472.CAN-07-1922
[13] F. Cheng, P. J. McLaughlin, M. F. Verderame and I. S. Zagon, “The OGF-OGFr Axis Utilizes the p21 Pathway to Restrict Progression of Human Pancreatic Cancer,” Molecular Cancer, Vol. 7, No. 5, 2008.
[14] F. Cheng, P. J. McLaughlin, M. F. Verderame and I. S. Zagon, “The OGF-OGFr Axis Utilizes the p16INK4a and p21WAF1/CIP1 Pathways to Restrict Normal Cell Proliferation,” Molecular Biology of the Cell, Vol. 20, No. 1, 2009, pp. 319-327. doi:10.1091%2Fmbc.E08-07-0681
[15] I. S. Zagon and P. J. McLaughlin, “Opioids and the Apoptotic Pathway in Human Cancer Cells,” Neuropeptides, Vol. 37, No. 2, 2003, pp. 79-88. doi:10.1016%2FS0143-4179%2803%2900007-6
[16] I. S. Zagon, M. F. Verderame, S. S. Allen and P. J. Mc-Laughlin, “Cloning, Sequencing, Chromosomal Location and Function of a cDNA Encoding The Opioid Growth Factor Receptor (OGFr) in Humans,” Brain Research, Vol. 856, No. 1-2, 2000, pp. 75-83. doi:10.1016%2FS0006-8993%2899%2902330-6
[17] F. Cheng, P. J. McLaughlin, M. F. Verderame and I. S. Zagon, “Dependence on Nuclear Localization Signals of the Opioid Growth Factor Receptor in the Regulation of Cell Proliferation,” Experimental Biology and Medicine, Vol. 234, No. 5, 2009, pp. 532-541. doi:10.3181%2F0901-RM-16
[18] I. S. Zagon, T. B. Ruth, A. E. Leure-duPree, J. W. Sassani and P. J. McLaughlin, “Immunoelectron Microscopic Localization of the Opioid Growth Factor Receptor (OGFr) and OGF in the Cornea,” Brain Research, Vol. 967, No. 1-2, 2003, pp. 37-47. doi:10.1016%2FS0006-8993%2802%2904172-0
[19] I. S. Zagon, T. B. Ruth and P. J. McLaughlin, “Nucleocytoplasmic Distribution of Opioid Growth Factor (OGF) and Its Receptor (OGFr) in Tongue Epithelium,” The Anatomical Record Part A: Discoveries in Molecular, Cellular and Evolutionary Biology, Vol. 282, No. 1-2, 2005, pp. 24-37.
[20] F. Cheng, P. J. McLaughlin and I. S. Zagon, “Regulation of Cell Proliferation by the Opioid Growth Factor Is Dependent on Karyopherin β and Ran for Nucleocytoplasmic Trafficking,” Experimental Biology and Medicine, Vol. 235, No. 9, 2010, pp. 1093-1101. doi:10.1258%2Febm.2010.010139
[21] I. S. Zagon, R. N. Donahue and P. J. McLaughlin, “Opioid Growth Factor—Opioid Growth Factor Receptor Axis Is a Physiological Determinant on Cell Proliferation in Diverse Human Cancers,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, Vol. 297, No. 4, 2009, pp. R1154-R1161.
[22] I. S. Zagon, R. N. Donahue, M. Rogosnitzky and P. J. McLaughlin, “Imiquimod Upregulates the Opioid Growth Factor Receptor to Inhibit Cell Proliferation Independent of Immune Function,” Experimental Biology and Medicine, Vol. 233, No. 8, 2008, pp. 968-979. doi:10.3181%2F0802-RM-58
[23] I. S. Zagon, M. F. Verderame, J. L. Hankins and P. J. McLaughlin, “Overexpression of the Opioid Growth Factor Receptor Potentiates Growth Inhibition in Human Pancreatic Cancer Cells,” International Journal of Oncology, Vol. 30, No. 4, 2007, pp. 775-783.
[24] P. J. McLaughlin, M. F. Verderame, J. L. Hankins and I. S. Zagon, “Overexpression of the Opioid Growth Factor Receptor Downregulates Cell Proliferation of Human Squamous Carcinoma Cells of the Head and Neck,” International Journal of Molecular Medicine, Vol. 19, No. 3, 2007, pp. 421-428.
[25] B. Sporrong, S. Falkmer, S. J. Robboy, J. Alumets, R. Hakanson, O. Ljungberg and F. Sundler, “Neurohormonal Peptides in Ovarian Carcinoids: An Immunohistochemical Study of 81 Primary Carcinoids and of Intraovarian Metastases from Six Mid-Gut Carcinoids,” Cancer, Vol. 49, No. 1, 1982, pp. 68-74. doi:10.1002%2F1097-0142%2819820101%2949%3A1%3C68%3A%3AAID-CNCR2820490115%3E3.0.CO%3B2-%23
[26] I. S. Zagon, P. J. McLaughlin, S. R. Goodman and R. E. Rhodes, “Opioid Receptors and Endogenous Opioids in Diverse Human and Animal Cancers,” Journal of the National Cancer Institute, Vol. 79, No. 5, 1987, pp. 1059-1065.
[27] Y. Kikuchi, T. Kita, M. Miyauchi, I. Iwano and K. Kato, “Inhibition of Human Ovarian Cancer Cell Proliferation in Vitro by Neuroendocrine Hormones,” Gynecologic On- cology, Vol. 32, No. 1, 1989, pp. 60-64. doi:10.1016%2F0090-8258%2889%2990851-2
[28] Y. Kikuchi, T. Kita and I. Nagata, “Effects of Opioid Peptides on the Cellular Immunity in Spleen Cells from Intact Nude Mice or Nude Mice Bearing Human Ovarian Carcinoma,” Cancer Immunology and Immunotherapy, Vol. 30, No. 6, 1990, pp. 374-376. doi:10.1007% 2FBF01786888
[29] J. A. Mollick, F. S. Hodi, R. J. Soiffer, L. M. Nadler and G. Dranoff, “MUC1-Like Tandem Repeat Proteins Are Broadly Immunogenic in Cancer Patients,” Cancer Immunology, Vol. 3, No. 3, 2003.
[30] J. Fogh and G. Trempe, “New Human Tumor Cell Lines,” In: J. Fogh, Ed., Human Tumor Cells in Vitro, Plenum Publishing Corp., New York, 1975, pp. 115-159.
[31] H. Devalapally, Z. Duan, M. V. Seiden and M. M. Amiji, “Paclitaxel and Ceramide Co-Administration in Biodegradable Polymeric Nanoparticulate Delivery System to Overcome Drug Resistance in Ovarian Cancer,” International Journal of Cancer, Vol. 121, No. 8, 2007, pp. 1830-1838.
[32] H. Devalapally, D. Shenoy, S. Little, R. Langer and M. Amiji, “Poly (Ethylene Oxide)-Modified Poly (Beta-Amino Ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs: Part 3. Therapeutic Efficacy and Safety Studies in Ovarian Cancer Xenograft Model,” Cancer Chemotherapy and Pharmacology, Vol. 59, No. 4, 2007, pp. 477-484. doi:10. 1007%2Fs00280-006-0287-5
[33] E. Lundberg, I. Hoiden-Guthenberg, B. Larsson, M. Uhlen and T. Gr?slund, “Site-Specifically Conjugated Anti-HER2 Affibody Molecules as One-Step Reagents for Target Expression Analyses on Cells and Xenograft Samples,” Journal of Immunological Methods, Vol. 319, No. 1-2, 2007, pp. 53-63. doi:10.1016% 2Fj.jim.2006.10.013
[34] T. Tran, T. Engfeldt, A. Orlova, C. Widstrom, A. Bruskin, V. Tolmachev and A. E. Karlstrom, “In Vivo Evaluation of Cysteine-Based Chelators for Attachment of 99mTc to Tumor-Targeting Affibody Molecules,” Bioconjugate Chemistry, Vol. 18, No. 2, 2007, pp. 549-559. doi:10.1021%2Fbc060291m
[35] W. S. N. Shim, M. Teh, P. O. P. Mach and R. Ge, “Inhibition of Angiopoietin-1 Expression in Tumor Cells by Antisense RNA Approach Inhibited Xenograft Tumor Growth in Immunodeficient Mice,” International Journal of Cancer, Vol. 94, No. 1, 2001, pp. 6-15.
[36] I. S. Zagon and P. J. McLaughlin, “Production and Characterization of Polyclonal and Monoclonal Antibodies to the Zeta (ζ) Opioid Receptor,” Brain Research, Vol. 630, No. 1-2, 1993, pp. 295-302.
[37] A. Bandyopadhyay, F. López-Casillas, S. N. Malik, J. L. Montiel, V. Mendoza, J. Yang and L. Z. Sun, “Antitumor Activity of a Recombinant Soluble Betaglycan in Human Breast Cancer Xenograft,” Cancer Research, Vol. 62, No. 16, 2002, pp. 4690-4695.
[38] R. Ravi, B. Mookerjee, Z. M. Bhujwalla, C. H. Sutter, D. Artemov, Q. Zeng, L. E. Dillehay, A. Madan, G. L. Semenza and A. Bedi, “Regulation of Tumor Angiogenesis by P53-Induced Degradation of Hypoxia-Inducible Factor 1α,” Genes and Development, Vol. 14, No. 1, 2000, pp. 34-44.
[39] J. Blebea, J. E. Mazo, T. K. Kihara, J. H. Vu, P. J. Mc-Laughlin, R. G. Atnip and I. S. Zagon, “Opioid Growth Factor Modulates Angiogenesis,” Journal of Vascular Surgery, Vol. 32, No. 2, 2000, pp. 364-373. doi:10.1067%2Fmva.2000.107763b
[40] J. Blebea, J. H. Vu, S. Assadnia, P. J. McLaughlin, R. G. Atnip and I. S. Zagon, “Differential Effects of Vascular Growth Factors on Arterial and Venous Angiogenesis,” Journal of Vascular Surgery, Vol. 35, No. 3, 2002, pp. 532-538. doi:10.1067%2Fmva.2002.120 042
[41] I. S. Zagon, F. M. Essis, M. F. Verderame, D. A. Healy, R. G. Atnip and P. J. McLaughlin, “Opioid Growth Factor Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Artery,” Journal of Vascular Surgery, Vol. 37, No. 3, 2003, pp. 636-643. doi:10.1067%2Fmva.200 3.165
[42] I. S. Zagon, J. W. Sassani, M. F. Verderame and P. J. Mc- Laughlin, “Particle-Mediated Gene Transfer for OGFr cDNA Regulates Cell Proliferation of the Corneal Epithelium,” Cornea, Vol. 24, No. 5, 2005, pp. 614-619. doi:10.1097%2F01.ico.0000153561.89902.57
[43] I. S. Zagon, J. W. Sassani, K. J. Malefyt and P. J. Mc-Laughlin, “Particle-Mediated Gene Transfer of OGFr cDNA Regulates Corneal Repair,” Archives of Ophthamology, Vol. 124, No. 11, 2006, pp. 1620-1624. doi:10.1001%2Farchopht.124.11. 1620
[44] P. J. McLaughlin, S. Kreiner, C. R. Morgan and I. S. Zagon, “Prevention and Delay in Progression of Human Squamous Cell Carcinoma of the Head and Neck in Nude Mice by Stable Overexpression of the Opioid Growth Factor Receptor,” International Journal of Oncology, Vol. 33, No. 4, 2008, pp. 751-757.
[45] I. S. Zagon, S. Kreiner, J. J. Heslop, A. B. Conway, C. R. Morgan and P. J. McLaughlin, “Prevention and Delay in Progression of Human Pancreatic Cancer by Stable Overexpression of the Opioid Growth Factor Receptor,” International Journal of Oncology, Vol. 33, No. 2, 2008, pp. 317-323.
[46] J. P. Smith, R. L. Conter, S. I. Bingaman, H. A. Harvey, D. T. Mauger, M. Ahmad, L. M. Demers, W. B. Stanley, P. J. McLaughlin and I. S. Zagon, “Treatment of Advanced Pancreatic Cancer with Opioid Growth Factor: Phase I,” Anti-Cancer Drugs, Vol. 15, No. 3, 2004, pp. 203-209. doi:10.1097%2F00001813-200403 000-00003
[47] J. P. Smith, S. I. Bingaman, D. T. Mauger, H. A. Harvey, L. M. Demers and I. S. Zagon, “Opioid Growth Factor (OGF) Improves Clinical Benefit and Survival in Patients with Advanced Pancreatic Cancer,” Open Access Journal of Clinical Trials, Vol. 2010, No. 2, 2010, pp. 1-12.
[48] A. Gaspari, S. K. Tyring and T. Rosen, “Beyond a Decade of 5% Imiquimod Topical Therapy,” Journal of Drugs in Dermatology, Vol. 8, No. 5, 2009, pp. 467-474.
[49] S. Ganjian, A. J. Ourian, G. Shamtoub, J. J. Wu and J. E. Murase. “Off-Label Indications for Imiquimod,” Dermatology Online Journal, Vol. 15, No. 5, 2009, p. 4.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.