Electric-Jet Assisted Layer-by-Layer Deposition of Gold Nanoparticles to Prepare Conducting Tracks

Abstract

A suspension of 15nm diameter gold nanoparti-cles has been deposited along a line on a silicon substrate with the assistance of a jet generated in an electric field. In order to control the evaporation of the solvent used to suspend the gold nanoparticles, a heating device was used to change the substrate temperature. Layer-by- layer deposition enabled the direct writing of gold tracks having an electrical resistivity of 1.8 × 10-7 Ωm, only about an order of magnitude above the electrical resistivity of bulk gold.

Share and Cite:

R. Samarasinghe, S. , Pastoriza-Santos, I. , J. Edirisinghe, M. , J. Reece, M. , Liz-Marzán, L. , R. Nangrejo, M. and Ahmad, Z. (2009) Electric-Jet Assisted Layer-by-Layer Deposition of Gold Nanoparticles to Prepare Conducting Tracks. Natural Science, 1, 142-150. doi: 10.4236/ns.2009.12018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Xu, J., Drelich, J. and Nadgorny, E.M. (2004) La-ser-based patterning of gold nanoparticles into micro-structures. Langmuir, 20(4), 1021-1025.
[2] Lee, H.H., Chou, K.S. and Huang, K.C. (2005) Inkjet printing of nanosized silver colloids. Nanotechnology, 16 (10), 2436-2441.
[3] Rogers, J.A., Paul, K.E. and Whitesides, G.M. (1998) Quantifying distortions in soft lithography. Journal of Vacuum Science & Technology B, 16(1), 88-97.
[4] Chrisey, D.B. (2000) Materials processing - The power of direct writing. Science, 289(5481), 879-881.
[5] Yu, J.H., Kim, S.Y. and Hwang, J. (2007) Effect of vis-cosity of silver nanoparticle suspension on conductive line patterned by electrohydrodynamic jet printing. Ap-plied Physics A-Materials Science & Processing, 89(1), 157-159.
[6] Kamyshny, A., Ben-Moshe, M., Aviezer, S. and Magdassi, S. (2005) Ink-jet printing of metallic nanoparticles and microemulsions. Macromolecular Rapid Communica-tions, 26(4), 281-288.
[7] Chen, D.R., Pui, D.Y.H. and Kaufman, S.L. (1995) Elec-trospraying of conducting liquids for monodisperse aero-sol generation in the 4 Nm to 1.8 Mu-M diameter range. Journal of Aerosol Science, 26(6), 963-977.
[8] Sullivan, A.C., Scott, K. and Jayasinghe, S.N. (2007) Nanofabrication by electrohydrodynamic jetting of a tai-lor-made living siloxane sol. Macromolecular Chemistry and Physics, 208, 2032-2038.
[9] Jayasinghe, S.N., Edirisinghe, M.J. and Wang, D.Z. (2004) Controlled deposition of nanoparticle clusters by elec-trohydrodynamic atomization. Nanotechnology, 15(11), 1519-1523.
[10] Allen, M.L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanpera, K., Suhonen, M. and Seppa, H. (2008) Elec-trical sintering of nanoparticle structures. Nanotechnol-ogy, 19(17), Article Number: 175201.
[11] Kim, D., and Moon, J. (2005) Highly conductive ink jet printed films of nanosilver particles for printable elec-tronics. Electrochemical and Solid State Letters, 8(11), J30-J33.
[12] Szczech, J.B., Megaridis, C.M., Gamota, D.R. and Zhang, J. (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans-actions on Electronics Packaging Manufacturing, 25, 26-33.
[13] Kim, D., Jeong, S., Park, B.K. and Moon, J. (2006) Di-rect writing of silver conductive patterns: Improvement of film morphology and conductance by controlling sol-vent compositions. Applied Physics Letters, 89(26), arti-cle number: 264101.
[14] Dearden, A.L., Smith, P.J., Shin, D.Y., Reis, N., Derby, B. and O'Brien, P. (2005) A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromolecular Rapid Communi-cations, 26(4), 315-318.
[15] Liu, Z.C., Su, Y. and Varahramyan, K. (2005) Ink-jet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478(1-2), 275-279.
[16] Perelaer, J., De Gans, B.J. and Schubert, U.S. (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials, 18(16), 2101-2104.
[17] Bieri, N.R., Chung, J., Haferl, S.E., Poulikakos, D. and Grigoropoulos, C.P. (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Applied Phys-ics Letters, 82(20), 3529-3531.
[18] Bieri, N.R., Chung, J., Poulikakos, D. and Grigoropoulos, C.P. (2004) Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparti-cle suspension. Superlattices and Microstructures, 35(3- 6), 437-444.
[19] Nur, H.M., Song, J.H., Evans, J.R.G. and Edirisinghe, M.J. (2002) Ink-jet printing of gold conductive tracks. Journal of Materials Science-Materials in Electronics, 13, 213-219.
[20] Chung, J.W., Ko, S.W., Bieri, N.R., Grigoropoulos, C.P. and Poulikakos, D. (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Applied Physics Letters, 84(5), 801-803.
[21] Park, B.K., Kim, D., Jeong, S., Moon, J. and Kim, J.S. (2007) Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 515(19), 7706-7711.
[22] Lee, D.Y., Hwang, E.S., Yu, T.U., Kim, Y.J. and Hwang, J. (2006) Structuring of micro line conductor using elec-tro-hydrodynamic printing of a silver nanoparticle sus-pension. Applied Physics A-Materials Science & Proc-essing, 82(4), 671-674.
[23] Lee, D.Y., Shin, Y.S., Park, S.E., Yu, T.U. and Hwang, J. (2007) Electrohydrodynamic printing of silver nanoparti-cles by using a focused nanocolloid jet. Applied Physics Letters, 90(8), article number: 081905.
[24] Enustun, B.V. and Turkevich, J. (1963) Coagulation of colloidal gold. Journal of the American Chemical Society, 85(21), 3317-3328.
[25] Graf, C., Vossen, D.L.J., Imhof, A. and Van Blaaderen, A. (2003) A general method to coat colloidal particles with silica. Langmuir, 19(17), 6693-6700.
[26] Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Na-gel, S.R. and Witten, T.A. (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
[27] Reneker, D.H., Yarin, A.L., Fong, H. and Koombhongse, S. (2000) Bending instability of electrically charged liq-uid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531-4547.
[28] Samarasinghe, S.R., Pastoriza-Santos, I., Edirisinghe, M. J., Reece, M.J. and Liz-Marzan, L.M. (2006) Printing gold nanoparticles with an electrohydrodynamic di-rect-write device. Gold Bulletin, 39(2), 48-53.
[29] Samarasinghe, S.R., Pastoriza-Santos, I., Edirisinghe, M. J. and Liz-Marzan, L.M. (2008) Fabrication of nano- structured gold films by electrohydrodynamic atomisa-tion. Applied Physics A -Materials Science & Processing, 91(1), 141-147.
[30] Cortie, M.B. (2004) The weird world of nanoscale gold. Gold Bulletin, 37(1-2), 12-19.
[31] Shim, J.H., Lee, B.J. and Cho, Y.W. (2002) Thermal sta-bility of unsupported gold nanoparticle: a molecular dy-namics study. Surface Science, 512 (3), 262-268.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.