Small Angle Neutron Scattering and X-Ray Diffraction Studies of Nanocrystalline Titanium Dioxide
M. Nasir Khan, J. Bashir
.
DOI: 10.4236/jmp.2011.29115   PDF    HTML   XML   7,894 Downloads   12,860 Views   Citations

Abstract

Nanocrystalline titanium dioxide powder is characterized for phase analysis as well as particle size and its distribution by x-ray diffraction and small angle neutron scattering measurements. Analysis of the SANS data in the momentum transfer range q = 0.1 - 1.8 nm–1 reveals an average particle size of 24.82 nm in good agreement with the particle size determined earlier by transmission electron microscopy. XRD measurement proves co-existence of rutile and anatase phases in this commercial TiO2 nanocrystalline powder.

Share and Cite:

M. Khan and J. Bashir, "Small Angle Neutron Scattering and X-Ray Diffraction Studies of Nanocrystalline Titanium Dioxide," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 962-965. doi: 10.4236/jmp.2011.29115.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. M. Leger, J. Haines and B. Blanzat, “Materials Poten-tially Harder Than Diamond: Quenchable High—Pressure Phases of Transition Metal Oxides,” Journal of Materials Science Letters, Vol. 13, 1994, pp. 1688-1690. doi:10.1007/BF00451741
[2] A. Fahmi, C. Minot, B. Silvi and M. Causa, “Theoretical Analysis of the Structures of TiO2 Crystals,” Physical Review B, Vol. 47, 1993, pp. 11717-11724. doi:10.1103/PhysRevB.47.11717
[3] H. Cheng, J. Ma, Z. Zhao and L. Qi, “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Par-ticles,” Chemistry of Materials, Vol. 7, No. 4, 1995, pp. 663-671. doi:10.1021/cm00052a010
[4] R. U. Flood and D. Fitzmaurice, “Preparation, Characte-rization and Potential Dependent Optical Absorption Spectroscopy of Unsupported Large Area Transparent Nanocrystalline TiO2 Membranes,” Journal of the Physical Chemistry, Vol. 99, No. 22, 1995, pp. 8954-8958. doi:10.1021/j100022a004
[5] T. Fuyuki and H. Matsunami, “Electronic Properties of the Interface between Si and Tio2 Deposited at Very Low Temperatures,” Japanese Journal of Applied Physics, Vol. 25, No. 9, 1986, pp.1288-1291. doi:10.1143/JJAP.25.1288
[6] P. V. Kamat and N. M. Dimitrijevic, “Colloidal Semi-conductors as Photo-Catalyst for Solar Energy Conver-sion,” Solar Energy, Vol. 44, 1990, pp. 83-98. doi:10.1016/0038-092X(90)90070-S
[7] S. A. Larson and J. L. Falconer, “Characterization of TiO2 Photocatalysis Used in Trichlorethene Oxidation,” Applied Catalysis B: Environmental, Vol. 4, 1994, pp. 325-342. doi:10.1016/0926-3373(94)00030-1
[8] A. L. Micheli, “Fabrication and Performance Evaluation of Titania Automotive Exhaust Gas Sensor,” American Ceramics Society Bulletin, Vol. 54, 1984, p. 694-698.
[9] K. L. Siefering and G. L.Griffin, “Kinetics of Low Pres-sure Chemical Vapor Deposition TiO2 from Titanium Te-traisopropxide,” Journal of the Electrochemical Society, Vol. 137, No. 4, 1990, pp. 814-818. doi:10.1149/1.2086561
[10] H. Tang, K. Prasad, R. Sanjines and F. Levy, “TiO2 Ana-tase Thin Films as Gas Sensors,” Sensors Actuators B, Vol. 26-27, 1995, pp. 71-75. doi:10.1016/0925-4005(94)01559-Z
[11] X. Z. Ding, Z. Z. Qi and Y. Z. He, “Effect of Hydrolysis Water on the Preparation of Nano Crystalline Titania Powder via a Sol-Gel Process,” Journal of Materials Science Lettters, Vol. 14, 1995, pp. 21-22.
[12] S. J. Kim, S. D. Park, Y. H. Jeong and S. Park, “Homo-geneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution,” Journal of American Ceramic Society, Vol. 82, No. 4, 1999, pp. 927-932. doi:10.1111/j.1151-2916.1999.tb01855.x
[13] Q. Chen, Y. Qian, Z. Chen, G. Zhou and Y. Zhang, “Preparation of TiO2 Powders with Different Morpholo-gies by an Oxidation Hydrothermal Combination Method,” Materials Letters, Vol. 22, 1995, p. 77-80. doi:10.1016/0167-577X(94)00227-4
[14] Y. F. Chen, C. Y. Lee, M. Y. Yeng and H. T. Chiu, “The Effect of Calcination Temperature on the Crystallinity of TiO2 Nanopowder,” Journal of Crystal Growth, Vol. 247, 2003, pp. 363-370. doi:10.1016/S0022-0248(02)01938-3
[15] M. N. Khan, K. Shahzad and J. Bashir, “Thermal Atomic Displacements in Nanocrystalline Tltanium Dioxide Stu-died by Synchrotron X-Ray Diffraction,” Journal of Physics D: Applied Physics, Vol. 41, No. 8, 2008, Article ID: 085409.
[16] U. K. Srdic, V. Wiedenman, M. Winterer and H. Hahn, “Nono Sized Ceramics of Coated Alumina and Zirconia Analysed with SANS,” Journal of Applied Crystallogra-phy, Vol. 33, 2000, pp. 483-487. doi:10.1107/S0021889899014727
[17] J. Kohlbrecher, “SASFITTCL (2) version 0.2 Alpha,” PSI, Zurich, 1999.
[18] E. J. Shin, B. S. Seong, Y. S. Han, K. P. Hong, C. H. Lee and H. J. Kang, “Effect of Precipitate Size and Dispersion on Crystallization Behaviour in Ti–Added Ultra Low Carbon Steel,” Journal of Applied Crystallography, Vol. 36, No. 3, 2003, pp. 624-628. doi:10.1107/S0021889803003856
[19] J. Blasing, P. Kohlert, M. Zacharias and P. Veit, “X-Ray Fine Structure Investigations of Germanium Nanoclus-ters,” Journal of Applied Crystallography, Vol. 31, 1998, pp. 589-593. doi:10.1107/S0021889898001071
[20] S.-J. Kim, J.-K. Lee, H.-G. Lee, S.-J. Kim and K.-S. Lee, “Photocatalytic Properties of Rutile Tio2 Acicular Particles in Aqueous 4-Chlorophenol Solution,” Journal of Materials Research, Vol. 18, No. 3, 2003, pp. 729-732. doi:10.1557/JMR.2003.0098

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.