Construction and Evaluation of a Combined Cyclophosphamide/Nanoparticle Anticancer Vaccine
Kurt Andrew Yaeger, Robert Anthony Kurt
.
DOI: 10.4236/jct.2011.23053   PDF    HTML     5,453 Downloads   10,016 Views   Citations

Abstract

Tumor immunotherapy is a rapidly emerging form of cancer treatment. In the current study, a nanoparticle-based vaccine was constructed and the efficacy was assessed through analysis of immune cell populations, tumor growth rates, and metastasis. The vaccine was fabricated through encapsulation of plasmid DNA encoding the tumor-associated antigen Mage-b, and the TLR9 agonist CpG oligodeoxynucleotides by a biodegradable polymer, poly(L,D-lactic-coglycolic acid) (PLGA). The size and shape of the nanoparticles suggested that they were an appropriate size for uptake by professional antigen presenting cells; dendritic cells. Furthermore, effects of the immunopotentiating drug cyclo-phosphamide was included to decrease systemic populations of regulatory T cells (Treg); immune system sentinels that down-regulate immune responses. The vaccine was assessed using the 4T1 murine mammary carcinoma model which is a model for stage IV breast cancer. The combined cyclophosphamide/nanoparticle vaccine was shown to significantly reduce 4T1 tumor growth rates and lung metastasis in female BALB/c mice.

Share and Cite:

K. Yaeger and R. Kurt, "Construction and Evaluation of a Combined Cyclophosphamide/Nanoparticle Anticancer Vaccine," Journal of Cancer Therapy, Vol. 2 No. 3, 2011, pp. 384-393. doi: 10.4236/jct.2011.23053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Waldmann, “Immunotherapy: Past, Present and Future,” Nature Medicine, Vol. 9, 2003, pp. 269-277. doi:10.1038/nm0303-269
[2] J. Blattman and P. Greenberg, “Cancer Immune Therapy: A Treatment for the Masses,” Science, Vol. 305, No. 5681, 2004, pp. 200-205. doi:10.1126/science.1100369
[3] C. Lurquin, C. De Smet, F. Brasseur, F. Muscatelli, V. Martelange, E. De Plaen, R. Brasseur, A. P. Monaco and T. Boon, “Two Members of the Human MAGEB Gene Family Located in Xp21.3 Are Expressed in Tumors of Various Histological Origins,” Genomics, Vol. 46, No. 3, 1997, pp. 397-408. doi:10.1006/geno.1997.5052
[4] R. K. Sypniewska, L. Hoflack, M. Tarango, S. Gauntt, B. Z. Leal, R. L. Reddick and C. Gravekamp, “Prevention of Metastasis with a Mage-b DNA Vaccine in a Mouse Breast Tumor Model: Potential for Breast Cancer Therapy,” Breast Cancer Research and Treatment, Vol. 91, No. 1, 2005, pp. 19-28. doi:10.1007/s10549-004-6454-7
[5] C. Gravekamp, B. Leal, A. Denny, R. Baher, S. Lampkin, F. Castro, S. H. Kim, D. Moore and R. Riddick, “In vivo Responses to Vaccination with Mage-b, GM-CSF and Thioglycollate in a Highly Metastatic Mouse Breast Tumor Model, 4T1,” Cancer Immunology Immunotherapy, Vol. 57, No. 7, 2008, pp. 1067-1077. doi:10.1007/s00262-007-0438-5
[6] J. Banchereau and A. Palucka, “Dendritic Cells as Therapeutic Vaccines against Cancer,” Nature Reviews Immunology, Vol. 5, 2005, pp. 296-306. doi:10.1038/nri1592
[7] S. Rakoff-Nahoum and R. Medzhitov, “Toll-Like Receptors and Cancer,” Nature Reviews Cancer, Vol. 9, 2009, pp. 57-63. doi:10.1038/nrc2541
[8] M. Colombo and S. Piconese, “Regulatory T-Cell Inhibition versus Depletion: The Right Choice in Cancer Immunotherapy,” Nature Reviews Cancer, Vol. 7, 2007, pp. 880-887. doi:10.1038/nrc2250
[9] M. Lutsiak, D. Robinson, C. Coester, G. Kwon and J. Samuel, “Analysis of Poly(D,L-lactic-co-Glycolic Acid) Nanosphere Uptake by Human Dendritic Cells and Macrophages in Vivo,” Pharmacological Research, Vol. 19, No. 10, 2002, pp. 1480-1487. doi:10.1023/A:1020452531828
[10] T. Yoshikawa, N. Okada, A. Oda, K. Matsuo, K. Matsuo, H. Kayamuro, Y. Ishii, T. Yoshinaga, T. Agaki, M. Akashi and S. Nakagawa, “Nanoparticles Built by Self-Assembly of Amphiphilic Gamma-PGA Can Deliver Antigens to Antigen-Presenting Cells with High Efficiency: A New Tumor-Vaccine Carrier for Eliciting Effector T Cells,” Vaccine, Vol. 26, No. 10, 2008, pp. 1303-1313. doi:10.1016/j.vaccine.2007.12.037
[11] Y. Men and M. Groettrup, “PLGA Microspheres for Improved Antigen Delivery To Dendritic Cells as Cellular Vaccines,” Advanced Drug Delivery Reviews, Vol. 57, No. 3, 2005, pp. 475-482. doi:10.1016/j.addr.2004.09.007
[12] P. Kocbek, N. Obermajer, M. Cegnar, J. Kos and J. Kristl, “Targeting Cancer Cells Using PLGA Nanoparticles Surface Modified with Monoclonal Antibody,” Journal of Controlled Release, Vol. 120, No. 1-2, 2007, pp. 18-26. doi:10.1016/j.jconrel.2007.03.012
[13] M. Diwan, P. Elamanchili, H. Lane, A. Gainer and J. Samuel, “Biodegradable Nanoparticle Mediated Delivery to Human Cord Blood Derived Dendritic Cells for Induction of Primary T Cell Responses,” Journal of Drug Targeting, Vol. 11, No. 8-10, 2003, pp. 495-507. doi:10.1080/10611860410001670026
[14] A. Iwasaki and R. Medzhitov, “Toll-Like Receptor Control of the Adaptive Immune Responses,” Nature Immunology, Vol. 5, 2004, pp. 987-995. doi:10.1038/ni1112
[15] J. Blander and R. Medzhitov, “Toll-Dependent Selection of Microbial Antigens for Presentation Bydendritic Cells,” Nature, Vol. 440, 2006, pp. 808-812. doi:10.1038/nature04596
[16] A. Krieg, “Toll-Like Receptor 9 (TLR9) Agonists in the Treatment of Cancer,” Oncogene, Vol. 27, 2008, pp. 161-167. doi:10.1038/sj.onc.1210911
[17] M. Diwan, P. Elamanchili, M. Cao and J. Samuel, “Dose Sparing of CpG Oligodeoxynucleotide Vaccine Adjuvants by Nanoparticle Delivery,” Current Drug Delivery, Vol. 1, No. 4, 2004, pp. 405-412. doi:10.2174/1567201043334597
[18] S. Hamdy, O. Molavi, Z. Ma, A. Haddadi, A. Al-shamsan, Z. Gobti, S. Elhasi, J. Samuel and A. Lavasanifar, “Co-Delivery of Cancer-Associated Antigen and Toll-Like Receptor 4 Ligand in PLGA Nanoparticles Induces Potent CD8+ T Cell-Mediated Anti-Tumor Immunity,” Vaccine, Vol. 26, No. 39, 2008, pp. 5046-5057. doi:10.1016/j.vaccine.2008.07.035
[19] C. Wischke, J. Zimmermann, B. Wessinger, A. Schendler, H. Borchart, J. Peters, T. Nesselhut and D. Lorenzen, “Poly(I:C) Coated PLGA Microparticles Induce Dendritic Cell Maturation,” International Journal Pharmacology, Vol. 365, 2009, pp. 61-68.
[20] K. Wing and S. Sakaguchi, “Regulatory T Cells Exert Checks and Balances on Self-Tolerance and Autoimmunity,” Nature Immunology, Vol. 11, No. 1, 2010, pp. 7-13. doi:10.1038/ni.1818
[21] W. Zou, “Regulatory T Cells, Tumor Immunity and Immunotherapy,” Nature Reviews Immunology, Vol. 6, 2006, pp. 295-230. doi:10.1038/nri1806
[22] R. Schabowsky, S. Madireddi, R. Sharma, E. Yolcu and H. Shirwan, “Targeting CD25+CD4+FOXP3+ Regulatory T Cells for the Augmentation or Cancer Immunotherapy,” Current Opinion in Investigational Drugs, Vol. 8, 2007, pp. 1002-1008.
[23] J. Taieb, N. Chaput, N. Schartz, S. Roux, S. Novault, C. Menard, F. Ghiringhelli, M. Terme, A. Carperntier, G. Darrasse-Jese, F. Lemonnier and L. Zitvogel, “Chemoimmunotherapy of Tumors: Cyc-Lophosphamide Synergizes with Exosome Based Vaccines,” Journal Immunology, Vol. 176, 2006, pp. 2722-2729.
[24] J. Liu, Y. Wu, X. Zhang, J. Yang, H. Li, Y. Mao, Y. Wang, X. Cheng, Y. Li, J. Xia, M. Masucci and Y. Zeng, Single Administration of Low Dose Cyclo-Phophamide Augments the Antitumor Effect of Dendritic Cell Vaccine,” Cancer Immunology Immunotherapy, Vol. 56, No. 10, 2007, pp. 1597-1604. doi:10.1007/s00262-007-0305-4
[25] M. Salem, A. Kadima, S. El-Naggar, M. Rubinstein, Y. Chen, W. Gillanders and D. Cole, “Defining the Ability of Cyclophosphamide Preconditioning to Enhance the Antigen-Specific CD8+ T Cell Response to Peptide Vaccination: Creation of a Beneficial Host Microenvironment Involving Type I IFNs and Myeloid Cells,” Journal of Immunotherapy, Vol. 30, No. 1, 2007, pp. 40-53. doi:10.1097/01.cji.0000211311.28739.e3
[26] C. Barbon, M. Yang, G. Wands, R. Ramesh, B. Slusher, M. Hedley and T. Luby, “Consecutive Low Doses of Cyclophosphamide Preferentially Target Tregs and Potentiate T Cell Responses Induced by DNA PLG Microparticle Immunization,” Cellular Immunology, Vol. 262, No. 2, 2010, pp. 150-161. doi:10.1016/j.cellimm.2010.02.007
[27] V. Radojcic, K. Bezak, M. Skarica, M. Pletneva, K. Yoshimura, R. Schulick and L. Luznik, “Cyclo-Phosphamide Resets Dendritic Cell Homeostasis and Enhances Antitumor Immunity through Effects that Extend Beyond Regulatory T Cell Elimination,” Cancer Immunology Immunotherapy, Vol. 59, No. 1, 2010, pp. 137-148. doi:10.1007/s00262-009-0734-3
[28] P. Liu, J. Jaffar, I. Hellstrom and K. Hellstrom, “Administration of Cyclophosphamide Changes the Immune Profile of Tumor-Bearing Mice,” Journal of Immunotherapy, Vol. 33, No. 1, 2010, pp. 53-59. doi:10.1097/CJI.0b013e3181b56af4
[29] R. Goforth, A. Salem, X. Zhu, S. Miles, X. Zhang, J. Lee and A. Sandler, “Immune Stimulatory Antigen Loaded Particles Combined with Depletion of Regulatory T-Cells Induce Potent Tumor Specific Immunity in a Mouse Model of Melanoma,” Cancer Immunology Immunotherapy, Vol. 58, No. 4, 2009, pp. 517-530. doi:10.1007/s00262-008-0574-6
[30] N. Wang and X. Wu, “Synthesis, Characterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Oligomers: Part II. Biodegradation and Drug Delivery Application,” Journal of Biomaterials Science, Polymer Edition, Vol. 9, 1997, pp. 75-87.
[31] K. Khazale and H. von Boehmer, “The Impact of CD4+CD25+ Treg on Tumor Specific CD8+ T Cell Cytotoxicity and Cancer,” Seminars in Cancer Biology, Vol. 16, No. 2, 2006, pp. 124-136.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.