JBPC> Vol.2 No.3, August 2011
Views: 1,646    Downloads: 1,644

Conformational behavior of stereo regular substituted polyglycolides is side chain dependent

DownloadDownload as PDF (Size:607KB) Full-Text HTML PP. 285-299   DOI: 10.4236/jbpc.2011.23033

ABSTRACT

Substituted polyglycolides having two asymmetric centers are attractive alternatives to materials derived from petroleum because of their biocompatibility and biodegradability. The conformational behavior of various substituted polyglycolides has been investigated by both quantum mechanical and molecular dynamics approaches. Polymethylglycolide (polylactide) and polyphenylmethylglycolide in RS or SR forms are predicted to adopt 27 ribbon type structures with φ, ψ values of ±30, ±50 or +30 or +50 respectively stabilised by carbonyl-carbonyl interactions. Isopropylglycolide and isobutyl-glycolide having branching at β & γ positions respectively in their side chains can be realized in all SS form with φ, ψ values lying in right handed helical region. In addition to carbonyl-carbonyl interactions, the hydrophobic interactions between the side chains in isopropylgly-colide the C-H-O interactions also contributes to the stability. With cyclic side chains directly attached to Cα of backbone, polyphenylglycolide (polymandelide) and polycyclohexylglycolide are found to adopt left handed helical structure without hydrogen bonds in RR form, stabilised by stacking interactions and hydrophobic interactions respectively. In all the forms of polyphenylglycolide & polycyclohexylglycolide, the cyclic side chains are found to be locked into unfavourable gauche plus conformation. The stability of substituted polyglycolides has been analyzed in terms of various interactions. The carbonyl-carbonyl interactions in all the conformations of all forms of substituted polyglycolides are found to be of highly shielded parallel motif with only one short carbon-oxygen interaction. Simulation studies of substituted polyglycolides in water give a good insight of the approach of water molecules to the backbone.

KEYWORDS


Cite this paper

Nandel, F. and Garla, R. (2011) Conformational behavior of stereo regular substituted polyglycolides is side chain dependent. Journal of Biophysical Chemistry, 2, 285-299. doi: 10.4236/jbpc.2011.23033.

References

[1] Tsuji, H. and Sumida, K.J. (2001) Poly(L-lactide). V. Effects of storage in swelling solvents on physical properties and structure of poly(L-lactide). Journal of Applied Polymer Science, 79, 1582. doi:10.1002/1097-4628(20010228)79:9<1582::AID-APP60>3.0.CO;2-7
[2] Bleach, N.C., Tanner, K.E., Kellomaki, M. and Tormala, P. (2001) Effect of filler type on the mechanical properties of self reinforced polylactide calcium phosphate composites. Journal of Materials Science: Materials in Medicine, 12, 911-915. doi:10.1023/A:1012884310027
[3] Ikada, Y. and Tsuji, H. (2000) Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 21, 117. doi:10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
[4] Dorgan, J.R., Lehermeier, H.J., Palade, L.-I. and Ciero, J. (2001) Polylactides: Properties and prospects of an environmentally benign plastic form renewable resources. Macromolecular Symposia, 175, 55. doi:10.1002/1521-3900(200110)175:1<55::AID-MASY55>3.0.CO;2-K
[5] Lehermeir, H.J., Dorgan, J.R. and Way, D.J. (2001) Gas permeation properties of poly(lactic acid). Journal of Membrane Science, 190, 243. doi:10.1016/S0376-7388(01)00446-X
[6] Benicewicz, B.C. and Hopper, P.K. (1990) Polymers for absorbable surgical sutures—Part I. Journal of Bioactive and Compatible Polymers, 5, 453-472. doi:10.1177/088391159000500407
[7] Aluminum Association (1999) Tokoyo steps up to recycling efforts. www.mmc.co.jp/english/environment/environment1999.pdf.
[8] Vert, M. (2000) Lactide polymerization faced with therapeutic application requirements. Macromolecular Symposia, 153, 333-342. doi:10.1002/1521-3900(200003)153:1<333::AID-MASY333>3.0.CO;2-9
[9] Zhang, L., Xiong, C. and Deng, X. (1995) Biodegradable polyester blends for biomedical application. Journal of Applied Polymer Science, 56, 103. doi:10.1002/app.1995.070560114
[10] Mochizuki, M. (2002) Properties and application of aliphatic polyester products. In: Doi, Y. and Steinbüchel, A. Eds., Biopolymers Polyesters III. Applications and Commercial Products, 1st Edition, Wiley-VCH, Weinheim, 1-23.
[11] Tsuji, H. (2002) Polylactides. In: Doi, Y. and Steinbüchel, A. Eds., Biopolymers Polyesters III. Applications and Commercial Products, 1st Edition, Wiley-VCH, Weinheim, 129-177.
[12] Ikada, Y. (1999). Polymeric biomaterials research. Advanced Engineering Materials, 1, 67-68. doi:10.1002/(SICI)1527-2648(199909)1:1<67::AID-ADEM67>3.0.CO;2-E
[13] Duek, E.A.R., Zavaglia, C.A.C. and Belangero, W.D. (1999) In vitro study of poly(lactic acid) pin degradation. Polymer, 40, 6465. doi:10.1016/S0032-3861(98)00846-5
[14] Coombes, A.G.A. and Meikle, M.C. (1994) Resorbable polymers as replacements for bone grafts. Clinical Materials, 17, 35-67. doi:10.1016/0267-6605(94)90046-9
[15] Cha, Y. and Pitt, C.G. (1990) The biodegradability of polyester blends. Biomaterials, 11, 108-112. doi:10.1016/0142-9612(90)90124-9
[16] Ouchi, T. and Ohya, Y. (2004) Design of lactide copolymers as biomaterials. Journal of Polymer Science Part A: Polymer Chemistry, 42, 453-462. doi:10.1002/pola.10848
[17] Hoogsteen, W., Postema, A.R. and Pennings, A.J. (1990) Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers. Macromolecules, 23, 634-642. doi:10.1021/ma00204a041
[18] Vert, M., Schwarch, G. and Coudane, J. (1995) Present and future of PLA polymers. Journal of Macromolecular Science: Pure and Applied Chemistry, 32, 787-796. doi:10.1080/10601329508010289
[19] Mainil-Varlet, P., Rahm, R. and Gogolewski, S. (1997) Long-term in vivo degradation and bone reaction to various polylactides. Biomaterials, 18, 257-266. doi:10.1016/S0142-9612(96)00126-3
[20] Vert, M., Li, S., Spenlehauer, G. and Guerin, P. (1992) Bioresorbability and biocompatibility of aliphatic polyesters. Journal of Materials Science: Materials in Medicine, 3, 432-446. doi:10.1007/BF00701240
[21] Duncan, R. and Kopecek, J. (1984) Soluble synthetic polymers as potential drug carriers. Advances in Polymer Science, 57, 51-101.
[22] Gruber, P.R. and Brien, M.O. (2002) Polylactides nature works TMPLA. In: Doi, Y. and Steinbüchel, A. Eds., Biopolymers Polyesters III. Applications and Commercial Products, 1st Edition, Wiley-VCH, Weinheim, 235-250.
[23] Kawahima, N., Ogawa, S., Obuchi, S., Matsuo, M. and Yagi, T. (2002) Polylactic acid “LACEA”, In: Doi, Y. and Steinbüchel, A. Eds., Biopolymers Polyesters III. Applications and Commercial Products, 1st Edition, Wiley- VCH, Weinheim, 251-274.
[24] Eling, B., Gogolewski, S. and Pennings, A.J. (1982) Comparison of melt-spun and solution-spun l-form fibers. Polymer, 23, 1587. doi:10.1016/0032-3861(82)90176-8
[25] Tsuji, H., Smith, R., Bonfield, W. and Ikada, Y. (2000) Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. Journal of Applied Polymer Science, 75, 629-639. doi:10.1002/(SICI)1097-4628(20000131)75:5<629::AID-APP5>3.0.CO;2-A
[26] Fambri, L., Pegoretti, A., Fenner, R., Incardona, S.D. and Migliaresi, C. (1997) Processing and in vitro degradation of poly(L-lactic acid) fibres. Polymer, 38, 79. doi:10.1016/S0032-3861(96)00486-7
[27] Perepelkin, K.E. (2002) Chemistry and technology of chemical fibers. Poly(lactide) fibers: Fabrication, properties, use, prospects, a review. Fibre Chemistry, 34, 85. doi:10.1023/A:1016359925976
[28] Conn, R.E., Kolstad, J.J., Borzelleca, J.F., Dixler, D.S., Filer, L.J., LaDu, B.N. and Pariza, M.W. (1995) Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology, 33, 273-283. doi:10.1016/0278-6915(94)00145-E
[29] Li, T., Strung, S., Radke, W., Klein, R. and Hofe, T. (2011) Chromatographic separation of polylactides by stereochemical composition. Polymer, 52, 40-45. doi:10.1016/j.polymer.2010.10.056
[30] Drumlight, R.E., Gruber, P.R. and Henton, D.E. (2000) Polylactic acid technology. Advanced Materials, 12, 1841-1846. doi:10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
[31] Dattaa, R., Tsaia, S.-P., Bonsignorea, P., Moona, S.-H. and Frank, J.R. (1995) Technological and economic potential of polylactic acid and lactic acid derivatives. FEMS Microbiology Reviews, 16, 221-231. doi:10.1111/j.1574-6976.1995.tb00168.x
[32] Yang, X., Kang, S., Yang, Y., Aou, K. and Hsu, S.L. (2004) Raman spectroscopic study of conformational changes in the amorphous phase of poly(lactic acid) during deformation. Polymer, 45, 4241-4248. doi:10.1016/j.polymer.2004.03.107
[33] Sarasua, J.R., Rodríguez, N.L., Arraiza, A.L. and Meaurio, E. (2005) Stereoselective crystallization and specific interactions in polylactides. Macromolecules, 38, 8362-8365. doi:10.1021/ma051266z
[34] Tsuji, H., Sawada, M. and Bouapao, L. (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Applied Materials & Interfaces, 1, 1719-1730. doi:10.1021/am9002759
[35] Neuendorf, R.E., Saiz, E., Tomsia, A.P. and Ritchie, R.O. (2008) Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4, 1288-1296. doi:10.1016/j.actbio.2008.04.006
[36] Kontakis, G.M., Pagkalos, J.E., Tosounidis, T.I., Melissas, J. and Katonis, P. (2007) Bioabsorbable materials in orthopaedics. Acta Orthopaedica Belgica, 73, 159-169.
[37] Kang, S., Hsu, H.D., Smith, P.B., Leugers, M.A. and Yang, X. (2001) A spectroscopic analysis of poly(lactic acid) structure. Macromolecules, 34, 4542-4548. doi:10.1021/ma0016026
[38] Meaurio, W., Zuza, E., Roderiguez, L.R. and Saraszua, J.R. (2006) Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. The Journal of Physical Chemistry, 110, 5790-5800. doi:10.1021/jp055203u
[39] Pan, P., Zhu, B., Dong, T., Yazawa, K., Shimizu, T., Tansho, M. and Inoue, Y. (2008) Conformational and microstructural characteristics of poly(L-lactide) during glass transition and physical aging. The Journal of Chemical Physics, 129, 184902-184912. doi:10.1063/1.3010368
[40] Yin, M. and Baker, G.L. (1999) Preparation and characterization of substituted polylactides. Macromolecules, 32, 7711-7718. doi:10.1021/ma9907183
[41] Simmons, T.L. and Baker, G.L. (2001) Poly(phenyllactide): Synthesis, characterization, and hydrolytic degradation. Biomacromolecules, 2, 658-663. doi:10.1021/bm005639+
[42] Trhnaille, T., Moller, M. and Gurny, R. (2004) Synthesis and ring-opening polymerization of new monoalkyl-sub- stituted lactides. Journal of Polymer Science Part A: Polymer Chemistry, 42, 4379-4391. doi:10.1002/pola.20251
[43] Liu, T.Q., Simmons, T.L., Bohnsack, D.A., Mackay, M.E., Smith, M.R. and Baker G.L.(2007) Synthesis of polymandelide: A degradable polylactide derivative with polystyrene-like properties. Macromolecules, 40, 6040-6047. doi:10.1021/ma061839n
[44] Baker, G.L., Vogel, E.B. and Smith, M.R. (2008) Glass transitions in polylactides. Polymer Reviews, 48, 64-84. doi:10.1080/15583720701834208
[45] Yang, D., Qu, J., Li, B., Ng, F.F., Wang, X.C., Cheung, K.K., Wang, D.P. and Wu, Y.D. (1999) Novel turns and helices in peptides of chiral α-aminoxy acids. Journal of the American Chemical Society, 121, 589-590. doi:10.1021/ja982528y
[46] Pullman, B. and Pullman, A. (1974) Molecular orbital calculations on the conformations of amino acid residues of proteins. Advances in Protein Chemistry, 128, 347-526. doi:10.1016/S0065-3233(08)60233-8
[47] Nandel, F.S., Malik, N., Singh, B and Jain, D.V.S. (1999) Conformational structure of peptides containing dehydroalanine: Formation of beta bend ribbon structure. International Journal of Quantum Chemistry, 72, 15-23. doi:10.1002/(SICI)1097-461X(1999)72:1<15::AID-QUA2>3.0.CO;2-2
[48] Nandel, F.S., Malik, N., Singh, B. and Virdi, M. (1999) Designing of peptides with left handed helical structure by incorporating the unusual amino acids. Indian Journal of Biochemistry & Biophysics, 36, 195-203.
[49] Lawrence, R.P. and Thompson, C.W.C. (1982) The boron analogue of glycine: A theoretical investigation of structure and properties. Theochem, 5, 37-43. doi:10.1016/0166-1280(82)80105-X
[50] Aleman, C. and Casanovas, J. (1994) Ab initio SCF and force-field calculations on low-energy conformers of 2-acetylamino-2,N-dimethylpropanamide. Journal of the Chemical Society, Perkin Transactions, 2, 563-568. doi:10.1039/p29940000563
[51] Aleman, C. and Casanovas, J. (1995) Molecular conformational analyses of dehydroalanine analogues. Biopolymers, 36, 71-82. doi:10.1002/bip.360360107
[52] Weiner, S.J., Singh, U.C., O’Donell, T.J. and Kollman, P.A. (1984) Quantum and molecular mechanical studies on alanyl dipeptide. Journal of the American Chemical Society, 106, 6243-45. doi:10.1021/ja00333a021
[53] Mohle, K. and Hoffman, H.J. (1998) Secondary structure formation in N-substituted peptides. Journal of Peptide Research, 51, 19-28. doi:10.1111/j.1399-3011.1998.tb00412.x
[54] Adzubei, A.A., Eisenmenger, F., Tumanyan, V.G., Zinke, M., Brodzinski, S. and Esipova, N.G. (1987) Approaching a complete classification of protein secondary structure. Journal of Biomolecular Structure & Dynamics, 5, 689-704.
[55] Adzubei, A.A and Sternberg, J.E. (1993) Left-handed polyproline II helices commonly occur in globular proteins. Journal of Molecular Biology, 229, 472-93. doi:10.1006/jmbi.1993.1047
[56] Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J.C. (2005) GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701-1718.doi:10.1002/jcc.20291
[57] Damm, W., Van Gunsteren, W. F. (2000) Reversible peptide folding: Dependence on molecular force field. Journal of Computational Chemistry, 21, 774-787. doi:10.1002/(SICI)1096-987X(20000715)21:9<774::AID-JCC6>3.3.CO;2-X
[58] Schuettelkopf, A.W. and Van Aalten, D.M.F. (2004) PRODRG—A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica, 60, 1355-1363.
[59] Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987) The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269-6271. doi:10.1021/j100308a038
[60] Berendsen, H.J.C., Postma, J.P.M., DiNola, A. and Haak, J.R. (1984) Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684- 3690. doi:10.1063/1.448118
[61] Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, JG.E.M. (1997) LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
[62] Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995) A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577-8592. doi:10.1063/1.470117
[63] Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F. and Hermans, J. (1981) Interaction models for water in relation to protein hydration. In: Pullman, B., Ed., Intermolecular Forces, D. Reidel Publishing Company, Dordrecht, 331-342.
[64] Brant, D.A., Tonelli, A.E. and Flory, P.J. (1969) The configurational statistics of random poly(lactic acid) chains. I. Experimental results. Macromolecules, 2, 225-227. doi:10.1021/ma60009a002
[65] Witzke, D.R. (1997) Introduction to properties, engineering and prospects of polylactide polymers. PhD Thesis, Michigan State University, East Lansing, 389.
[66] Tanimoto, S., Iwata, T., Yamaoka, H., Yamada, M. and Kobori, K. (2009) Conformational study of polypeptide chains grafted on the surface of polylactide latex particle. Research Leters in Material Sceince, 2009, 196950.
[67] Nandel, F.S. and Jaswal, R. (2007) New type of helix and 27 ribbon structure formation in poly ?Leu peptides: Construction of a single-handed template. Biomacromolecules, 8, 3093-3101. doi:10.1021/bm700504h
[68] Nandel, F.S. and Kaur, H. (2003) Effect of terminal achiral and chiral residues on the conformational behaviour of poly ?ZPhe and analysis of various interactions. Indian Journal of Biochemistry & Biophysics, 40, 265-73.
[69] Park, C. and Goddard III, W.A. (2000) Stabilization of α-helices by dipole-dipole interactions within α-helices. Journal of Physical Chemistry B, 104, 7784-7789. doi:10.1021/jp0001743
[70] Jing, F., Smith, M.R. and Backer, G.L. (2007) Cyclohexyl-substituted polyglycolides with high glass transition temperatures. Macromolecules, 40, 9304-9312. doi:10.1021/ma071430d
[71] Allen, F.H., Baalham, C.A., Lommerse, J.P.M. and Raithby, P.R. (1998) Carbonyl-carbonyl interactions can be competitive with hydrogen bonds. Acta Crystallographica Section B, 54, 320-329. doi:10.1107/S0108768198001463
[72] Allen, F.H., Dacies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G. (1991) The development of version 3 and 4 of the Cambridge Structural Database System. Journal of Chemical Information and Modeling, 31, 187-204. doi:10.1021/ci00002a004
[73] Maccallum, P.H., Poet, R. and Milner-White, E.J. (1995) Coulombic interactions between partially charged main- chain atoms not hydrogen-bonded to each other influence the conformations of alpha-helices and anti-parallel beta-sheet. A new method for analyzing the forces between hydrogen bonding groups in proteins includes all the Coulombic interactions. Journal of Molecular Biology, 48, 361-373. doi:10.1016/S0022-2836(95)80056-5
[74] Maccallum, P.H., Poet, R. and Milner-White, E.J. (1995) Coulombic attractions between partially charged main- chain atoms stabilize the right-handed twist found in most beta-strands. Journal of Molecular Biology, 248, 374-384. doi:10.1006/jmbi.1995.0277
[75] Deane, C.M., Allen, F.H., Taylor, R. and Blundell, T.L. (2000) Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid. Protein Engineering, 13, 1025-1028.
[76] Nandel, F.S. and Khare, B. (2005) Conformation of peptides constructed from achiral amino acid residues Aib and ?ZPhe: Computational study of the effect of L/D- Leu at terminal positions. Biopolymers, 77, 63-73. doi:10.1002/bip.20128
[77] Nandel, F.S., Kaur, H., Malik, N., Shankar, N. and Jain, D.V.S. (2001) Conformational study of peptides containing dehydrophenylalanine: Helical structures without hydrogen bonds. Indian Journal of Biochemistry & Biophysics, 38, 417-425.
[78] Senes, A., Belandia, I.U. and Engelman, D.M. (2001) The Caα-H....O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proceedings of the National Academy of Sciences, 98, 9051-9056. doi:10.1073/pnas.161280798
[79] Steiner, T. (1997) Unrolling the hydrogen bond properties of C-H O interactions. Chemical Communications, 8, 727-734. doi:10.1039/a603049a
[80] Steiner, T. (1996) C-H---O hydrogen bonding in crystals. Crystallography Reviews, 6, 1-51. doi:10.1080/08893119608035394
[81] Palumbo, M., Cosani, A., Terbojevich, M. and Peggion, E. (1981) Conformational studies on synthetic polypeptides: poly (D-phenylglycine) and poly(D-cyclohexylglycine). International Journal of Biological Macromolecules, 3, 91-96. doi:10.1016/0141-8130(81)90073-8

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.