Share This Article:

Coarse-grained simulations of branched bilayer membranes: effects of cholesterol-dependent phase separation on curvature-driven lipid sorting

Full-Text HTML Download Download as PDF (Size:5160KB) PP. 268-284
DOI: 10.4236/jbpc.2011.23032    3,209 Downloads   6,524 Views   Citations

ABSTRACT

Our recent coarse-grained (CG) molecular dynamics (MD) simulations of membranes with a hemifused-ribbon (λ-shaped) geometry showed curvature-driven demixing leading to enrich ment in dioleoyl-phosphatidylethanolamine (DOPE) in a negatively-curved region (at C = –0.8 nm–1) of a DOPE/dipalmitoyl-phosphati-dylcholine (DPPC) membrane. Here we extend the analysis with respect to lipid composition and simulation time. Simulations of 12 – 20 μs effective time show that, compared with DOPE of the DOPE/DPPC system, a DPPC/dilinoleyl-PC [di(18:2)PC] membrane showed a similar degree of enrichment of di(18:2)PC in the curved region with C=–0.8 nm–1. For the latter mixture, even weak negative curvatures (C=–0.5 – 0.6 nm–1) caused significant degrees of di(18:2)PC enrichment. In agreement with recent studies of a planar bilayer, a ternary DPPC/ di(18:2)PC/cholesterol 0.42:0.28:0.3 mixture phase-separated into nanoscale raft-like liquid-ordered (Lo) and non-raft liquid-disordered (Ld) phases on a sub-microsecond time scale. The Lo domains were preferentially localized at planar portions, whereas the Ld domains were positioned mainly in curved regions of the membrane. Unlike binary dioleoylphosphatidylcho-line (DOPC)/cholesterol and DPPC/cholesterol mixtures, which showed only a slight enrich ment of cholesterol in the curved region, the ternary mixtures showed considerable migra tion of cholesterol and DPPC from the curved to the planar region. A pronounced degree of lipid segregation due to the preferential distribution of the Ld and Lo domains in the curved and planar regions, respectively, was observed even when the curvature of the fused monolayers (originally ‘cis’ leaflets) was weakened (C= –0.5 nm-1). Overall, the results are consistent with theoretical predictions based on spontaneous curvature of the constituent lipids and the difference in rigidity between the Ld and Lo domains, whereas lipid-lipid interactions, such as PE-PE or DPPC-cholesterol, as well as propensity for interleaflet colocalization (registration) of the Lo and Ld domains appear to significantly amplify curvature-induced lipid demixing in the λ system. Intriguingly, for the DPPC/ di(18:2)PC/cholesterol ternary mixtures, a Lo/Ld domain boundary often moved to the branched point of the membrane, suggesting enhanced flexibility at the domain boundary. We hypothesize that curvature-driven lipid sorting and energetically favored localization of domain boundaries at sharp bends in the membranes may collaborate to assist intracellular lipid sorting.

Cite this paper

Nishizawa, M. and Nishizawa, K. (2011) Coarse-grained simulations of branched bilayer membranes: effects of cholesterol-dependent phase separation on curvature-driven lipid sorting. Journal of Biophysical Chemistry, 2, 268-284. doi: 10.4236/jbpc.2011.23032.

References

[1] Van Meer, G., Voelker, D.R. and Feigenson, G.W. (2008) Membrane lipids: Where they are and how they behave. Nature Reviews Molecular Cell Biology, 9, 112-124. doi:10.1038/nrm2330
[2] Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature, 387, 569-572. doi:10.1038/42408
[3] Jacobson, K., Mouritsen, O.G. and Anderson, R.G. (2007) Lipid rafts: At a crossroad between cell biology and physics. Nature Cell Biology, 9, 7-14. doi:10.1038/ncb0107-7
[4] Chernomordik, L.V. and Kozlov, M.M. (2008) Mechanics of membrane fusion. Nature Structural & Molecular Biology, 15, 675-683. doi:10.1038/nsmb.1455
[5] Vogel, S.S., Leikina, E.A. and Chernomordik, L.V. (1993) Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. Journal of Biological Chemistry, 268, 25764-25768.
[6] Cohen, F.S. and Melikyan, G.B. (2004) The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. Journal of Mem- brane Biology, 199, 1-14. doi:10.1007/s00232-004-0669-8
[7] Chernomordik, L.V. and Kozlov, M.M. (2003) Protein- lipid interplay in fusion and fission of biological mem- branes. Annual Review of Biochemistry, 72, 175-207. doi:10.1146/annurev.biochem.72.121801.161504
[8] Churchward, M.A., Rogasevskaia, T., H?fgen, J., Bau, J. and Coorssen, J.R. (2005) Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. Journal of Cell Science, 118, 4833-4848. doi:10.1242/jcs.02601
[9] Lingwood, D., Kaiser, H.J., Levental, I. and Simons, K. (2009) Lipid rafts as functional heterogeneity in cell membranes. Biochemical Society Transactions, 37, 955-960. doi:10.1042/BST0370955
[10] Lingwood, D., Ries, J., Schwille, P. and Simons, K. (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proceedings of the National Academy of Sciences of the United States of America, 105, 10005-10010. doi:10.1073/pnas.0804374105
[11] Churchward, M.A. and Coorssen, J.R. (2009) Cholesterol, regulated exocytosis and the physiological fusion machine. Biochemical Journal, 423, 1-14. doi:10.1042/BJ20090969
[12] Roux, A., Cuvelier, D., Nassoy, P., Prost, J., Bassereau, P. and Goud, B. (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO Journal, 24, 1537-1545. doi:10.1038/sj.emboj.7600631
[13] Baumgart, T., Hess, S.T. and Webb, W.W. (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature, 425, 821-824. doi:10.1038/nature02013
[14] Sorre, B., Callan-Jones, A., Manneville, J.B., Nassoy, P., Joanny, J.F., Prost, J., Goud, B. and Bassereau, P. (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proceedings of the National Academy of Sciences of the United States of America, 106, 5622-5626. doi:10.1073/pnas.0811243106
[15] Parthasarathy, R., Yu, C.H. and Groves, J.T. (2006) Curvature-modulated phase separation in lipid bilayer membranes. Langmuir, 22, 5095-5099. doi:10.1021/la060390o
[16] Mukherjee, S., Soe, T.T. and Maxfield, F.R. (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. Journal of Cell Biology, 144, 1271-1284. doi:10.1083/jcb.144.6.1271
[17] Van Meer, G. and Lisman, Q. (2002) Sphingolipid transport: Rafts and translocators. Journal of Biological Chemistry, 277, 25855-25858. doi:10.1074/jbc.R200010200
[18] Ostrowski, S.G., Van Bell, C.T., Winograd, N. and Ewing, A.G. (2004) Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science, 305, 71-73. doi:10.1126/science.1099791
[19] Nishizawa, M. and Nishizawa, K. (2010) Curvature- driven lipid sorting: Coarse-grained dynamics simulations of a membrane mimicking a hemifusion intermediate. Journal of Biophysical Chemistry, 1, 86-95. doi:10.4236/jbpc.2010.12011
[20] Tian, A. and Baumgart, T. (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophysical Journal, 96, 2676-2688. doi:10.1016/j.bpj.2008.11.067
[21] Derganc, J. (2007) Curvature-driven lateral segregation of membrane constituents in Golgi cisternae. Physical Biology, 4, 317-324. doi:10.1088/1478-3975/4/4/008
[22] Cooke, I.R. and Deserno, M. (2006) Coupling between lipid shape and membrane curvature. Biophysical Journal, 91, 487-495. doi:10.1529/biophysj.105.078683
[23] Epand, R.M., Thomas, A., Brasseur, R. and Epand, R.F. (2010) Cholesterol interaction with proteins that partition into membrane domains: An overview. Subcellular Biochemistry, 51, 253-278. doi:10.1007/978-90-481-8622-8_9
[24] Nielsen, S.O., Lopez, C.F., Srinivas, G. and Klein, M.L. (2004) Coarse grain models and the computer simulations of soft materials. Journal of Physics Condensed Matter, 16, R481-R512. doi:10.1088/0953-8984/16/15/R03
[25] Marrink, S.-J., de Vries, A.H. and Tieleman, D.P. (2009) Lipids on the move: Simulation of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta, 1788, 149-168. doi:10.1016/j.bbamem.2008.10.006
[26] Marrink, S.J. and Mark, A.E. (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. Journal of American Chemical Society, 125, 11144-11145. doi:10.1021/ja036138+
[27] Kasson, P.M., Kelley, N.W., Singhal, N., Vrljic, M., Brunger, A.T. and Pande, V.S. (2006) Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 103, 11916-11921. doi:10.1073/pnas.0601597103
[28] Kasson, P.M. and Pande, V.S. (2007) Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Computational Biology, 3, e220. doi:10.1371/journal.pcbi.0030220
[29] Chernomordik, L.V. and Kozlov, M.M. (2005) Membrane hemifusion: Crossing a chasm in two leaps. Cell, 123, 375-382. doi:10.1016/j.cell.2005.10.015
[30] Liu, T., Wang, T., Chapman, E.R. and Weisshaar, J.C. (2008) Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophysical Journal, 94, 1303-1314. doi:10.1529/biophysj.107.107896
[31] Niemel?, P.S., Ollila, S., Hyv?nen, M.T., Karttunen, M. and Vattulainen, I. (2007) Assessing the nature of lipid raft membranes. PLoS Computational Biology, 3, e34.
[32] Bennett, W.F., MacCallum, J.L., Hinner, M.J., Marrink, S.J. and Tieleman, D.P. (2009) Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. Journal of American Chemical Society, 131, 12714-12720. doi:10.1021/ja903529f
[33] Berkowitz, M.L. (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochimica et Biophysica Acta, 1788, 86-96.
[34] Risselada, H.J. and Marrink, S.J. (2008) The molecular face of lipid rafts in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 105, 17367-17372. doi:10.1073/pnas.0807527105
[35] Kaiser, H.J., Lingwood, D., Levental, I., Sampaio, J.L., Kalvodova, L., Rajendran, L. and Simons K. (2009) Order of lipid phases in model and plasma membranes. Proceedings of the National Academy of Sciences of the United States of America, 106, 16645-16650. doi:10.1073/pnas.0908987106
[36] Lindahl, E., Hess B. and Van der Spoel D. (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306-317.
[37] Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P. and De Vries, A.H. (2007) The MARTINI force field; coarse grained model for biomolecular simulation. Journal of Physical Chemistry, 111, 7812-7824. doi:10.1021/jp071097f
[38] Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984) Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81, 3684-3690. doi:10.1063/1.448118
[39] Humphery W., Dalke A. and Schulten K. (1996) VMD—Visual molecular dynamics. Journal of Molecular Graphics and Modelling, 14, 33-38. doi:10.1016/0263-7855(96)00018-5
[40] Wang, W., Yang, L. and Huang, H.W. (2007) Evidence of cholesterol accumulated in high curvature regions: implication to the curvature elastic energy for lipid mixtures. Biophysical Journal, 92, 2819-2830. doi:10.1529/biophysj.106.097923
[41] Chen, Z. and Rand, R.P. (1997) The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophysical Journal, 73, 267-276. doi:10.1016/S0006-3495(97)78067-6
[42] Kozlov, M. M. and Helfrich, W. (1992) Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer. Langmuir, 8, 2792-2797. doi:10.1021/la00047a035
[43] Kamal, M.M., Mills, D., Grzybek, M. and Howard, J. (2009) Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences of the United States of America, 106, 22245-22250. doi:10.1073/pnas.0907354106
[44] Marrink, S.J. and Mark, A.E. (2001) Effect of undulations on surface tension in simulated bilayers. Journal of Physical Chemistry B, 105, 6122-6127.
[45] Lindahl, E. and Edholm, O. (2000) Mesoscopic Undulations and Thickness Fluctuations in Lipid Bilayers from Molecular Dynamics Simulations. Biophysical Journal, 79, 426-433.
[46] Veatch, S.L. and Keller, S.L. (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophysical Journal, 85, 3074-3083. doi:10.1016/S0006-3495(03)74726-2
[47] García, R.A., Pantazatos, S.P., Pantazatos, D.P. and MacDonald, R.C. (2001) Cholesterol stabilizes hemifused phospholipid bilayer vesicles. Biochimica et Biophysica Acta, 1511, 264-270.
[48] Fratti, R.A., Jun, Y., Merz, A.J., Margolis, N. and Wickner, W. (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. Journal of Cell Biology, 167, 1087-1098. doi:10.1083/jcb.200409068
[49] Jun, Y. and Wickner, W. (2007) Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proceedings of the National Academy of Sciences of the United States of America, 104, 13010-13015. doi:10.1073/pnas.0700970104
[50] Katsov, K., Müller, M. and Schick, M. (2004) Field theoretic study of bilayer membrane fusion. I. Hemifusion mechanism. Biophysical Journal, 87, 3277-3290. doi:10.1529/biophysj.103.038943
[51] Lee, J.Y. and Schick, M. (2007) Field theoretic study of bilayer membrane fusion III: Membranes with leaves of different composition. Biophysical Journal, 92, 3938-3948. doi:10.1529/biophysj.106.097063
[52] Staal, R.G., Mosharov, E.V. and Sulzer, D. (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nature Neuroscience, 7, 341-346. doi:10.1038/nn1205
[53] Aravanis, A.M., Pyle, J.L. and Tsien, R.W. (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature, 423, 643-647. doi:10.1038/nature01686
[54] Vardjan, N., Stenovec, M., Jorgacevski, J., Kreft, M. and Zorec, R. (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. Journal of Neuroscience, 27, 4737-4746. doi:10.1523/JNEUROSCI.0351-07.2007
[55] Xia, X., Lessmann, V. and Martin, T.F. (2009) Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. Journal of Cell Science, 122, 75-82. doi:10.1242/jcs.034603
[56] Hanna, S.T., Pigeau, G.M., Galvanovskis, J., Clark, A., Rorsman, P. and MacDonald, P.E. (2009) Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells. Pflugers Arch, 457, 1343-1350. doi:10.1007/s00424-008-0588-0
[57] Miklavc, P., Albrecht, S., Wittekindt, O.H., Schullian, P., Haller, T. and Dietl, P. (2009) Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in type II pneumocytes. Biochemical Journal, 424, 7-14. doi:10.1042/BJ20091094
[58] Zampighi, G.A., Zampighi, L.M., Fain, N., Lanzavecchia, S., Simon, S.A. and Wright, E.M. (2006) Conical electron tomography of a chemical synapse: Vesicles docked to the active zone are hemi-fused. Biophysical Journal, 91, 2910-2918. doi:10.1529/biophysj.106.084814
[59] Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. and Ha, T. (2006) Multiple intermediates in SNARE-induced membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 103, 19731- 19736. doi:10.1073/pnas.0606032103
[60] Floyd, D.L., Harrison, S.C. and van Oijen, A.M. (2009) Method for measurement of viral fusion kinetics at the single particle level. Journal of Visualized Experiments, 1484.
[61] Wang, T., Smith, E.A., Chapman, E.R. and Weisshaar, J.C. (2009) Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. Biophysical Journal, 96, 4122-4131. doi:10.1016/j.bpj.2009.02.050
[62] Haque, M.E., McIntosh, T.J. and Lentz, B.R. (2001) Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: “nature’s own” fusogenic lipid bilayer. Biochemistry, 40, 4340-4348. doi:10.1021/bi002030k
[63] Emoto, K. and Umeda, M. (2000) An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. Journal of Cell Biology, 149, 1215-1224. doi:10.1083/jcb.149.6.1215
[64] Liu, T, Tucker, W.C., Bhalla, A., Chapman, E.R. and Weisshaar, J.C. (2005) SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophysical Journal, 89, 2458- 2472. doi:10.1529/biophysj.105.062539
[65] Siegel, D.P. and Epand, R.M. (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: Implications for membrane fusion mechanisms. Biophysical Journal, 73, 3089-3111. doi:10.1016/S0006-3495(97)78336-X
[66] Grafmüller, A., Shillcock, J. and Lipowsky, R. (2007) Pathway of membrane fusion with two tension-dependent energy barriers. Physical Review Letter, 98, 21810.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.