Share This Article:

Experimental Evidence for Variability in Planck’s Constant

Full-Text HTML XML Download Download as PDF (Size:2600KB) PP. 124-137
DOI: 10.4236/opj.2016.66015    774 Downloads   979 Views   Citations


Annual variations of 1000 - 3000 ppm (peak-to-valley) have been observed in the decay rates of 8 radionuclides over a 20 year span by six organizations on three continents, including beta decay (weak interaction) and alpha decay (strong interaction). In searching for a common cause, we hypothesized that small variations in Planck’s constant might account for the observed synchronized variations in strong and weak decays. If so, then h would be a maximum around January-February of each year and a minimum around July-August of each year based on the 20 years of radioactive decay data. To test this hypothesis, a purely electromagnetic experiment was set up to search for the same annual variations. From Jun 14, 2011 to Jan 29, 2014 (941 days), annual variations in tunneling voltage through 5 parallel Esaki tunnel diodes were recorded. It found annual variations of 826 ppm peak-to-valley peaking around Jan 1. These variations lend support to the hypothesis that there is a gradient in h of about 21 ppm across the Earth’s orbit.

Cite this paper

Hutchin, R. (2016) Experimental Evidence for Variability in Planck’s Constant. Optics and Photonics Journal, 6, 124-137. doi: 10.4236/opj.2016.66015.


[1] Siegert, H., Schrader, H. and SchÖtzig, U. (1998) Half-Life Measurements of Europium Radionuclides and the Long-Term Stability of Detectors. Applied Radiation and Isotopes, 49, 1397.
[2] Ellis, K.J. (1990) The Effective Half-Life of a Broad Beam 238Pu/Be Total Body Neutron Radiator. Physics in Medicine and Biology, 35, 1079-1088.
[3] Falkenberg, E.D. (2001) Radioactive Decay Caused by Neutrinos? Apeiron, 8, 32-45.
[4] Alburger, D.E., Harbottle, G. and Norton, E.F. (1986) Half-Life of 32Si. Earth and Planetary Science Letters, 78, 168-176.
[5] Jenkins, J.H., et al. (2011) Analysis of Experiments Exhibiting Time Varying Nuclear Decay Rates: Systematic Effects or New Physics?
[6] Parkhomov, A.G. (2010) Researches of Alpha and Beta Radioactivity at Long-Term Observations.
[7] Towers, S. (2013) Improving the Control of Systematic Uncertainties in Precision Measurements of Radionuclide Half-Life. Applied Radiation and Isotopes, 77, 110-114.
[8] Fischbach, E., Jenkins, J.H., Sturrock, P.A., et al. (2011) Evidence for Solar Influences on Nuclear Decay Rates. In: Kostelecky, V.A., Ed., Proceedings of the Fifth Meeting on CPT and Lorentz Symmetry, World Scientific, Singapore, 168-172.
[9] Jere H. Jenkins et al. Evidence for Correlations between Nuclear Decay Rates and the Earth-Sun Distance. Web: arXiv:astro-ph:0808.3283v1
[10] Cooper, P.S. (2008) Searching for Modifications to the Exponential Radioactive Decay Law with the Cassini Spacecraft.
[11] Norman, E.B., Browne, E., Chan, Y.D., Goldman, I.D., Larimer, R.-M., Lesko, K.T., Nelson, M., Wietfeldt, F.E. and Zlimen, I. (1998) Half-Life of 44Ti. Physical Review C, 57.
[12] King, J.A. (2010) Searching for Variations in the Fine-Structure Constant and the Proton-to-Electron Mass Ratio Using Quasar Absorption Lines. PhD Thesis, University of South Wales.
[13] Webb, J.K., et al. (1998) A Search for Time Variation of the Fine Structure Constant.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.