Morphological and Functional Alterations in Human Red Blood Cells Treated with Titanium Citrate

Abstract

The morphological and functional effects of titanium (Ti) citrate on human erythrocytes were studied by scanning electron microscope (SEM), sulphate uptake via band 3 protein and by determining the reduced and oxidised glutathione (GSH and GSSG, respectively) concentrations. The rate constant for sulphate uptake was significantly lower after Ti citrate treatment. Ti citrate (0.001 and 0.0025 mM) significantly decreased erythrocyte GSH and increased GSSG concentrations. At 0.005 mM Ti citrate, the intracellular GSH could not be tested due to significant cellular damage. SEM of erythrocytes treated with 0.001 mM and 0.0025 mM Ti citrate showed structural membrane defects but almost normal cellular diameters. At even higher Ti citrate concentrations (0.005 mM), erythrocytes showed obvious morphological alteration and shape changes compromising the cells physiological functions. In conclusion, although the Ti concentrations used in our experiments are physiologically high, the cumulative effect of prolonged exposure to much lower doses of Ti, as might occur during total hip replacement, should be considered for further experimental testing.

Share and Cite:

G. Tiziana, D. Grazia, R. Pietro, R. Caterina, R. Orazio, S. Adriana and R. Leonardo, "Morphological and Functional Alterations in Human Red Blood Cells Treated with Titanium Citrate," Pharmacology & Pharmacy, Vol. 2 No. 3, 2011, pp. 116-121. doi: 10.4236/pp.2011.23015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Kasai, R. Iida, A. Uccida. “Metal concentrations in the serum and hair of patients with titanium alloy spinal im- plants”. Spine 2003; 28(12):1320-1326.
[2] C. G. Moon, H. S. Koth, D. Kluess, D. O’Commor, A. Mathur, G. A. Truskey, J. Rubin, D. X. F. Zhou, K. P. L. Sung. “Effects of titanium particle size on osteoblast functions in vitro and in vivo”. Proceding of the National academy of Sciences of the United States of America. 2005; 102 (12):4578-4583.
[3] F. Caruso, M. Rossi. “Antitumor titanium compounds”. Mini Rev. Med. Chem. 2004; 4(1):49-60.
[4] N. Hamasaki, K. Okubo. “Band 3 protein: physiology, function and structure”. Cellular and Molecular Biology 1996; 42(7):1025-1039.
[5] J. R . Casey, R. R. Kopito. “The role of cysteine residues in the erythrocyte plasma membrane anion exchange protein”. J. Biol. Chem. 1995; 270(15):8521-8527.
[6] A. Galtieri, E. Tellone, L. Romano, F. Misiti, E. Bellocco, S. Ficarra, A. Russo, D. Di Rosa, M. Castagnola, B. Giardina, I. Messana. “Band 3 protein function in human erythrocytes: efffect of oxygenation-deoxigenation”. Bio- chem Biophys Acta 2002; 1564(1):214-218.
[7] S. M. Blackman, E. J. Hustedt, C. E. Cobb, A. H. Beth. “Flexibility of the cytoplasmic domain of the anion exchange protein, band 3, in human erythrocytes”. Biophys. J. 2001. 81(6):3363-3376.
[8] J. Poole. “Red cell antigens on band 3 and glycophorin A”. Blood Rev. 2000; 14(1):31-43.
[9] D. Yannoukakos, C. Vasseur, J. P. Piau, H. Wajcman, E. Bursaux. “Phosphorilation sites in human erythrocyte band 3 protein”. Biochim. Biophys. Acta. 1991; 1061 (2):253-266.
[10] A. Barbul, Y. Zipser, A. Nachles, R. Korenstein. “De- oxygenation and elevation of intracellular magnesium induce tyrosine phosphorilation of band 3 in human erythrocytes”. Febs Lett. 1999; 455(1-2):87-91.
[11] L. Messori, P. Orioli, V. Banholzer, I. Pais, P. Zatta. “Formation of titanium (IV) transferrin by reaction of human serum apotransferrin with titanium complexes”. FEBS Lett. 1999; 442:157-161.
[12] J. Shida, M. C. D. Trindade, S. B. Goodman, D. J. Schurman, R. L. Smith. “Induction of interleukin-6 re- lease in human osteoblast-like cells exposed to titanium particles in vitro”. Calcified Tissue International 2000; 67:151-155.
[13] M. Suwalsky, F. Villana, B. Norris, M. A. Soto, C. P. Sotomayor , L. Messori, P. Zatta. “Structural effects of titanium citrate on the human erythrocyte membrane”. Journal of Inorganic Biochemistry 2005; 99:764-770.
[14] G. De Luca, T. Gugliotta, A. Scuteri, P. Romano, C. Rinaldi, A. Sidoti, A. Amato, L. Romano “The interac- tion of haemoglobin, magnesium, organic phosphates and the Band 3 protein in nucleated and anucleated erythro- cytes”. Cell Biochemistry and Function. 2004; 22:179- 186.
[15] L. Romano, A. Scuteri, T. Gugliotta, P. Romano, G. De Luca, A. Sidoti, A. Amato. “Sulphate influx in the eryth- rocytes of normal, diabetic and hypertensive patients”. Cell Biol Int. 2002; 26(5):421-426.
[16] S. M. Henning, J. Z. Zhang, R. W. McKee, M. E. Swend- seid, R.A. Jacob. “Glutathion blood levels and other oxidant defense indices in men fed diets low in vitamin C”. J. Nutr. 1991; 121 (12): 1969-1975.
[17] L. Romano, D. Peritore, E. Simone, A. Sidoti, F. Trischi- tta, P. Romano. “Chloride-sulphate exchange chemically measured in human erythrocyte ghosts”. Cell Mol. Biol. (Noisy-le-grand) 1998; 44(2):351-355.
[18] S. R. Sudipa, S. Gargi, B. Tuli. “Role of sulfhydryl groups in band 3 in the inhibition of phoshate transport across erythrocyte membrane in visceral leishmaniasis”. Archives of Biochemistry and Biophysics 2005; 436:121- 127.
[19] Pesarin F. “Multivariate permutation test”. Wiley N. Y. 2001; 37-61.
[20] G. De Luca, T. Gugliotta, G. Parisi, P. Romano, A. Geraci, O. Romano, A. Scuteri, L. Romano. “Effects of nickel on human and fish red blood cells”. Biosci Rep 2007; 27:265-273.
[21] C. Costagliola, L. Romano, P. Sorice, A. Di Benedetto. “Anemia and chronic renal failure: the possibile role of the oxidative state of glutathione”. Nephron 1989; 52(1): 11-14.
[22] H. Pasao?lu, A. Muhtaro?lu, M. G?nes, C. Utas. “The role of the oxidative state of glutathione and glutathione- related enzymes in anemia of hemodialysis patients”. Clinical Biochemistry 1996; 6:567-572.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.